การบำบัดฟอร์มัลดี่ไฮด์ในน้ำเสียสังเคราะห์

โดยการดูดขับด้วยถ่านกกกลม และถ่านธูปฤาษีผสมดิน ร่วมกับระบบหญ้ากรองน้ำเสียและระบบพื้นที่ชุ่มน้ำเทียม ในหน่วยทดลองขนาดเล็ก

Treatment of Formaldehyde in Synthetic Wastewater by Adsorption of Cyperus corymbosus Rottb. Charcoal and Typha angustifolia Linn. Charcoal Mixed Soil in Combination
with Grass Filtration and Constructed Wetland System in Lysimeter

วัชรพงษ์ วาระรัมย์ นิพนธ์ ตังคณานุรักษ์ คณิตา ตังคณานุรักษ์

unค̃กย่อ

 กว่าถ่านธูปฤาษี้ ขั้นี่ 2 ทำการnกลองโกยใชิ่กคนิคการกรองในหน่วยกกลองขนากเล็ก เลียนแ॥บบร:Uบหญ้า

[^0]
Abstract

The purpose of this research was to develop the grass filtration (GF) and constructed wetland (CW) system for enhancing the removal efficiency of formaldehyde (FM) in synthetic wastewater at concentration of $20 \mathrm{mg} / \mathrm{L}$. The two biocharcoals from Cyperus corymbosus Rottb. charcoal (C-char) and Typha angustifolia Linn. charcoal (T-char) were conducted as FM adsorbents. The analysis results of physical characteristics were found that C-char and T-char had surface area of 17.13 and $15.55 \mathrm{~m}^{2} / \mathrm{g}$ respectively, total pore volume of 2.41 and $2.16 \mathrm{~cm}^{3} / \mathrm{g}$ respectively and pore size of 56.34 and $55.70 \mathrm{~A}^{\circ}$ respectively. The procedure for FM analysis was the chromotropic acid spectrophotometric method. The experiments were divided into 2 steps. The first step was to investigate by column experiments to find out the ratio by weight of each biochar to soil which effecting on efficiency of FM removal and breakthrough curves. The results showed that the ratio at $1: 50$ was the suitable condition for these two biochars which the maximum FM removal at 95.04 and 93.31% respectively were achieved. From breakthrough curves at flow rate of $10 \mathrm{~mL} / \mathrm{min}$ of each biochar the breakthrough points were 300 and 200 mL respectively and the exhaustion points were 2,950 and $1,200 \mathrm{~mL}$ respectively. Therefore, the C-char was the better FM adsorbent than T-char. The second step, the filtrated lysimeter technique was employed by simulating the GF and CW system of LERD-project. The comparative experiment units were the type of treatment plants (Cyperus corymbosus Rottb. and Typha angustifolia Linn.) and growing materials (soil mixed with C-char and soil only). The results revealed that the experimental units of two systems which using mixed C-char and soil and growing Cyperus had the highest FM removal efficiency at 99.55% in the first week of GF and 94.85% for CW at flow rate of 100 $\mathrm{mL} / \mathrm{min}$. Furthermore, the breakthrough point of CW was 20 L , while the vaporization was not observed. A lot of Pseudomonas spp. was found in rhizosphere and no vaporization of FM. Therefore, the developed GF and CW system from this study could be considered as a potential FM treatment system for the treatment of industrial wastewater contaminated with FM.

คำสำคัญ: ฟอร์มัลดีไฮด์ ถ่านชีวภาพ ระบบหญ้ากรองน้ำเสีย ระบบพื้นที่ชุ่มน้ำเทียม Keywords: formaldehyde, biocharcoal, grass filtration system, constructed wetland system

\section*{1. บทนำ}

ในปัจจุบันปัญหาสิ่งแวดล้อมส่วนใหญ่ในประเทศไทยที่เกิดจากโรงงานอุตสาหกรรมยิ่งทวีความรุนแรงขึ้น ปัญหาหนึ่ง คือ การปลดปล่อยสารอินทรีย์ระเหยง่าย (Volatile Organic Compounds, VOCs) ออกมาปนเปื้อนกับน้ำทิ้ง ฟอร์ มัลดีใฮด์เป็นสารอินทรีย์ระเหยง่ายชนิดหนึ่งที่ก่อให้เกิดปัญหา โดยมีทั้งการใช้ฟอร์มัลดีไฮด์เป็นสารตั้งต้นในกระบวนการผลิต เช่น โรงงานอุตสาหกรรมผลิตสิ่งทอ เคมีภัณฑ์ พลาสติก เป็นต้น และฟอร์มัลดีไฮด์เป็นผลพลอยได้ ที่ได้จากกระบวนการ ผลิต ผลิตภัณฑ์อื่นๆ ดังนั้นฟอร์มัลดีไฮด์จึงมีโอกาสปนเปื้อนในสิ่งแวดล้อมสูง

ในที่นี้มุ่งเน้นการปนเปื้อนในสิ่งแวดล้อมของน้ำ มีการศึกษาที่พบว่า น้ำทิ้งที่เกิดจากอุตสาหกรรมผลิต เอทิลีน ไกลคอล มีฟอร์มัลดีไสด์ปนเปื้อนสูงถึง $2-18$ มิลลิกรัม/ลิตร (ข้อมูลจากนิคมอุตสาหกรรมมาบตาพุด ปี 2555) ซึ่งเป็นค่าที่ เกินเกณฑ์มาตรฐานน้ำทิ้งอุตสาหกรรมกำหนด (ไม่เกิน 1 มิลลิกรัม/ลิตร) Moortgat (1998) พบว่า ความเข้มข้น ของฟอร์มัลดีไฮด์ LC_{100} ที่ทำให้ปลาคาร์ฟตายหมดเท่ากับ 200 มิลลิกรัม/ลิตร และหากสูดดมไอระเหยของฟอร์มัลดีไฮด์ ที่มีความเข้มข้นมากกว่า 0.2 มิลลิกรัม/ลิตร จะทำให้เกิดอาการเฉียบพลันคือ แสบตาและระคายเคืองในระบบทางเดิน

หายใจ และความเข้มข้น 100 มิลลิกรัม/ลิตร ขึ้นไปส่งผลให้เสียชีวิตได้ โดยทั่วไปการบำบัดฟอร์มัลดีไฮด์ในน้ำเสียของ โรงงานอุตสหกรรมมีอยู่ด้วยกันหลายวิธี ได้แก่ ปฎิกิริยาออกซิเดชันโดยเลือกใช้โอโซน $\left(\mathrm{O}_{3}\right)$ ไฮโดรเจนเปอร์ออกไซด์ $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ และแก๊สคลอรีน $\left(\mathrm{Cl}_{2}\right)$ เป็นตัวออกซีใดซ์ หรือการใช้ร้งสี UV เป็นตัวเร่งปฏิกิริยา เป็นต้น ซึ่งวิธีการบำบัดดังกล่วประสบ ปัญหาหลายอย่าง คือ ราคาค่าติดตั้งอุปกรณ์สูง ค่าใช้จ่ายด้านสารเคมี และค่าบำรุงรักษาอุปกรณ์ รวมถึงอาจมีสารเคมีตกค้าง ในน้ำทิ้งหลังจากผ่านการบำบัด (Brais, 2008) ดังนั้นการหาวิธีทางเลือกอื่นในการบำบัดฟอร์มัลดีไฮด์ เช่น การดูดซับโดยใช้ วัสดุเหลือใช้จากธรรมชาติมาผลิตเป็นถ่านชีวภาพ (biocharcoal) เช่น ถ่านจากพืช ได้แก่ ต้นกกกลม และต้นธูปฤาษี จึงเป็นสิ่งที่น่าสนใจ เพระวัสดุชีวภาพเหล่านี้จะใช้กระบวนการทางเคมี-กายภาพ (Physical-Chemical process) ในการ กักเก็บมลสารไว้ (นิพนธ์ และคณิตา, 2550) และเมื่อนำมาผสมดินเป็นวัสดุสำหรับปลูกพืชเพื่อให้จุลินทรีย์โดยเฉพาะ กลุ่มจุลินทรีย์ที่พบมากบริเวณรอบรากพืช ได้แก่ Pseudomonas spp. และ Methylobacterium spp. ซึ่งเป็นจุลินทรีย์ ที่มีอยู่ตามธรรมชาติสามารถย่อยสลายฟอร์มัลดีไฮด์ที่มีความเข้มข้นสูงได้ (Mirdamadi et al., 2005) ย่อยสลายฟอร์มัล ดีไฮด์ที่ถูกเก็บกักไว้ ส่งผลทำให้ปริมาณฟอร์มัลดีไฮด์ในน้ำเสียลดลงได้

ดังนั้นการศึกษาวิจัยครั้งนี้จึงมุ่งเน้นไปสู่การพัฒนาระบบหญ้ากรองน้ำเสีย และพื้นที่ชุ่มน้ำเทียมให้มีประสิทธิภาพ ในการบำบัดฟอร์มัลดีไฮด์ ซึ่งระบบบำบัดทั้งสองแบบนี้จะอาศัยพืชที่ปลูกในระบบทำหน้าที่ดึงดูดสารอนินทรีย์จากกระบวน การย่อยสลายของจุลินทรีย์ที่มีอยู่ตามธรรมชาติในดินและน้ำ แต่จะต่างกันที่วิธีการปล่อยน้ำเข้าสู่ระบบ โดยระบบหญ้ากรอง น้ำเสียเป็นการปล่อยน้ำเข้าระบบขังแช่ 5 วัน สลับปล่อยแห้ง 2 วัน ส่วนระบบพื้นที่ชุ่มเทียมเป็นการปล่อยน้ำไหลเข้าระบบ ต่อเนื่องตลอด 24 ชั่วโมง ทั้งนี้การเลือกใช้ระบบขึ้นอยู่กับปริมาณน้ำเสียที่เกิดขึ้น (โครงการศึกษาวิจัยและพัฒนาสิ่งแวดล้อม แหลมผักเบี้ยอันเนื่องมาจากพระราชดำริ, 2550) และใช้ถ่านชีวภาพเป็นตัวดูดซับร่วมกับวัสดุปลูก โดยปลูกต้นกกกลม (Cyperus corymbosus Rottb.) และต้นธูปฤาษี (Typha angustifolia Linn.) เมื่อพืชเจริญเติบโตเต็มที่และหมดประสิทธิภาพ ในการบำบัดน้ำเสียแล้ว สามารถนำมาแปรรูปเป็นถ่านเพื่อใช้ในการดูดซับได้ต่อไป ถือได้ว่าเป็นการหมุนเวียนใช้ทรัพยากร ได้อย่างคุ้มค่าและยั่งยืน

2. วัตถุประสงค์

เพื่อพัฒนาระบบหญ้ากรองน้ำเสีย และพื้นที่ชุ่มน้ำเทียม ของโครงการศึกษาวิจัยและพัฒนาสิ่งแวดล้อม แหลมผักเบี้ยอันเนื่องมาจากพระราชดำริ ให้มีประสิทธิภาพในการบำบัดฟอร์มัลดีไฮด์ โดยใช้ถ่านชีวภาพเป็นตัวดูดซับร่วม กับวัสดุปลูก

3. วัสดุ อุปกรณ์

3.1 วัสดุดูดซับและวัสดุปลูก ได้แก่ ถ่านกกกลม ถ่านธูปฤาษี และใช้ดินนาผสมทราย (อัตราส่วน $3: 1$) จากโครงการ แหลมผักเบี้ยๆ เป็นวัดสุปลูก
3.2 พืชที่ใช้เป็นพืชบำบัด ได้แก่ ต้นกกกลม และต้นธูปฤฤษี
3.3 น้ำเสียสังเคราะห์ที่มีความเข้มข้นฟอร์มัลดดีไฮด์เท่ากับ 20 มิลลิกรัม/ลิตร เตรียมโดยปิเปตสารละลาย ฟอร์มัลดีไฮด์เข้มข้นร้อยละ 36 โดยปริมาตร 2.57 มิลลิลิตร ใส้ในขวดวัดปริมาตรขนาด 1 ลิตร ปรับปริมาตรด้วยน้ำกลั่น จะได้ สารละลายมาตรฐานฟอร์มัลดีไฮด์เข้มข้น 1,000 มิลลิกรัม/ลิตร จากนั้นโดยปิเปต 20 มิลลิลิตร ใส่ในขวดวัดปริมาตรขนาด 1 ลิตร แล้วปรับปริมาตรด้วยน้ำกลั่น

4. วิธีดำเนินการวิจัย

4.1 การเตรียมวัสดุ ถ่านกกกลม และถ่านธูปฤาษี เตรียมโดยนำต้นกกกลมและต้นธูปฤาษีมาตัดเป็นชิ้นยาวประมาณ 1 นิ้ว แล้วตากให้แห้ง เผาที่อุณหภูมิ 500 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง
4.2 ตรวจลักษณะพื้นที่ผิวโดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope; SEM) และ ตรวจวิเคราะห์หาพื้นที่ผิว (surface area) และปริมาตรรูพรุนทั้งหมด (total pore volume) โดยใช้เครื่อง วัดพื้นที่ผิวและขนาดรูพรุน (Surface Area Analyzer) ใช้วิธี Brunauer Emmett-Teller (BET Method)
4.3 การวิเคราะห์ปริมาณฟอร์มัลดีไฮด์ ใช้วิธีตรวจวัดสี (colorimetric) ของสารสีม่วงที่เกิดจากปฏิกิริยา ระหว่างฟอร์มัลดีไซด์กับกรดโครโมโทรปิก ด้วยเครื่องยูวี-วิซิเบิล สเปกโทรโฟโตมิเตอร์ที่ความยาวคลื่น 575 นาโนเมตร
4.4 ศึกษาการบำบัดฟอร์มัลดีไฮด์ในน้ำเสียสังเคราะห์ โดยการดูดซับด้วยถ่านกกกลมและถ่านธูปฤาษีผสมดิน ร่วมกับระบบหญ้ากรองน้ำเสียและระบบพื้นที่ชุ่มน้ำเทียมในหน่วยทดลองขนาดเล็ก แบ่งการทดลองเป็น 2 ขั้นตอน ดังนี้

การทดลองที่ 1 การทดลองแบบคอลัมน์ เพื่อศึกษาอัตราส่วนโดยน้ำหนักของถ่านต่อดิน และวิธีการ บำบัดที่ให้ประสิทธิภาพในการบำบัดฟอร์มัลดีไฮด์ได้ดีที่สุด ดังนี้

ถารทดลองที่ 1.1 ศึกษาอัตราส่วนโดยน้ำหนักของถ่านแต่ละชนิดต่อดิน โดยใช้วิธีการปล่อยน้ำเข้า ระบบ เลียนแบบระบบหญ้ากรองน้ำเสีย คือ ขังแช่ 5 วัน สลับปล่อยแห้ง 2 วัน และขังน้ำสูงหนือชั้นดิน 10 เซนติเมตร ตามหลัก การของโครงการแหลมผักเบี้ยฯ ทำการบรรจุชั้นวัสดุเป็นลำดับชั้นดังรูปที่ 1 ชั้นบนสุดเป็นชั้นของถ่านแต่ละชนิดผสมดิน อัตราส่วนโดยน้ำหนักที่ทำการศึกษา ได้แก่ $1: 10$ 1:20 $1: 30$ 1:40 $1: 50$ และ $1: 60$ แต่ละอัตราส่วนมีน้ำหนักสุทธิ 400 กรัม บรรจุใส่คอลัมน์แก้วขนาด 4.5×45 เซนติเมตร เติมน้ำเสียสังเคราะห์ที่มีความเข้มข้นฟอร์มัลดีไฮด์ 20 มิลลิกรัม/ ลิตร (เป็นความเข้มข้นที่ใกล้เคียงกับความเข้มข้นสูงสุดที่ตรวจพบในน้ำเสียอุตสาหกรรมคือ $2-18$ มิลลิกรัม/ลิตร) ใช้น้ำเสียสังงคราะห์ 200 มิลลิลิตร จากนั้นขังแช่ทิ้งไว้ 5 วัน ปิดปากคอลัมน์ เพื่อป้องกันการระเหยของฟอร์มัลดีไฮด์ เมื่อครบ 5 วัน ปล่อยให้น้ำเสียไหลออกจากปลายคอลัมน์จนหมด แล้วนำไปวิเคราะห์ปริมาณฟอร์มัลดีไซด์ และคำนวณหา ประสิทธิภาพบำบัดฟอร์มัลดีไซด์ หลังงกกนั้นปล่อยให้คอลัมน์แห้ง 2 วัน แล้วทำการทดลองเช่นเดิมซ้ำ 3 ครั้ง โดยเปลี่ยน วัสดุบรรจุใหม่ในแต่ละซ้ำ

การทดลองที่ 1.2 ศึกษาอัตราส่วนโดยน้ำหนักของถ่านแต่ละชนิดต่อดิน โดยใช้วิธีปล่อยน้ำเข้าระบบ เลียนแบบระบบพื้นที่ชุ่มน้ำเทียม คือ ปล่อยน้ำให้ไหลต่อเนื่องตลอด 24 ชั่วโมง โดยทำการบรรจุชั้นวัสดุของถ่านแต่ละ ชนิดผสมดินในอัตราส่วนเหมาะสมที่ได้จากการทดลองที่ 1.1 ใส่คอลัมน์ ปล่อยน้ำเสียสังเคราะห์ให้ใหลแบบต่อเนื่อง ด้วยอัตรกการไหล 10 มิลลิลิตร/นาที (ซึ่งเป็นอัตราการไหลสูงสุดที่ทุกคอลัมน์ไหลได้เท่ากัน) และหา breakthrough curve เพื่อทราบจุดเริ่มหมดสภาพ และจุดหมดสภาพของถ่านแต่ละชนิดผสมดิน

รูปที่ 1 ลำดับชั้นการบรรจุวัสคุลงในคอลัมน์

กรทตลองที่ 2 ศึกษาการำบัดฟอร์มัลดีไือโโดยใชใใในหน่วยทดลองขนาคเล็ก เพื่อเรียบบเทียบชนิดของพืช และวิธีการบำบัดที่ให้ประสิทธิกาพดีที่สุด แบ่งการทดลอง เป็นดังนี้

การทดลองที่ 2.1 ศึกษาการบำบัดฟอร์มัลดีไชด์ด้วยระบบหญู้กรองน้ำเสียโดยใใ้นน่วยทดลองขนาดเล็ก เป็นการทคลองเลียนแบบระบบหญ้ากรองน้ำสี่ย ตมหลักการของโครงการแหลมผักเบี้ยฯ ในกระบะพลาสติกขนาด $49 \times 49 \times 52$ เซนติเมตร ทำการบรรจุชั้นวัสจุปลูกเป็นลำดับชั้น ดังรูปที่ 2 ใช้ชนิดถ่านผสมดินในอัตรส่วนที่ได้จกกการทดลองที่ 1.1 ที่ให้ประสิทธิกาพการำบับสูงสุด และเปรียบเทียบกั้บหน่วยทดลองที่ใช้ดินเป็นวัสตุปลูกอย่างเดียว โดยในแต่ละกระบะ ปลูกต้นกกกลม และต้นธูปฤายีย กระบะละ 2 ต้น ให้ระยะห่างระหว่างต้นเท่กับ 30 เซนติเมตร ทำกรอนุบลลพืช จนมีความสูง 30 เซนติเมตร เติมน้ำเสียสังเคคระท์ ปริมาตร 40 ลิตร ขังแช่ทิ้งไว้ 5 วัน เก็บตัวอย่งน้ำจกกปลาย่อมาวิคราะห์ หบประสิทธิภาพกกรบำบัดฟอร์มัมดีีไดค์ของพืชแต่ลชชนิด หลังจกนั้นปล่อยให้หน่วยทดลองแห้ง 2 วัน แล้วทำการทคลอง ซ้ำเช่นเดิม จนอัตราการเจริญเติบโตของพืชเท่ากับศูนย์และในขมะทำการทดลองวัดการระเหยฟอร์มัลดีไยด์ โดยวัด ตั้งแต่เริ่มต้นและทุกๆ 5 นาที เหนือผิวน้ำ 5 เซนติเมตร ของหน่วยทดลองด้วยเครื่องวัดการระเหยฟอร็มัลดีไไดด์ (Formaldehyde Meter)

กรทดลองที่ 2.2 ศึกษาการบำบัดฟอร์มัลคีไได์ด้ดยระบบพื้นที่ชุ่มน้ำเที่ยมโดยใช้น่วยทดดลองงนาดเล็ก โดยทำการบรรจุชั้นวัสดุปลูกโดยใช้ชนิดถ่านผสมดินในอัตรส่วนที่ได้จากการทดลองที่ 1.2 ที่ให้ประสิทธิภาพการำบัด สูงสุด และปลูกพืช เช่นดีียวกันกับการทดลองที่ 2.1 เปรียบเทียบกับหน่วยทดลองชุดควบคุม (ไม่ปลูกพืช) แต่ใช้วิธีธำบัด เลียนแบบระบบพื้นที่ทุ่มมน้ำเทียม คือ ปล่อยน้ำให้ใหลต่อเนื่องตลอด 24 ชั่วโมง เติมน้ำเสียสังเคราะท์ให้ใหลแบบต่อเนื่อง ด้วยอัตราการไหลแตกต่างกัน คือ 100,300 และ 500 มิลลิลิตร/นาที ในหน่วยทตลองของพืชแต่ละชนิดเก็ธตัวอย่งน้ำ ทุก 1 ลิตร มวิวิคาะห์หาประสิทธิกาพการำบัดฟอร์มัลดีไได์ จนกรรทั่งัตราการเจิิญยติบโตของพืชทุกชนิดเท่กกับศูนย์ ในขณะทำการทดลองวัดอัตราการระเหยฟอร์มัลดีไได์ที่ผิวน้ำของหน่วยทดลองเช่นเดียวกัน และนำดินบริเวณรอบรากพืช มาวิเคระห์หาปริมาณชื้อกลุ่ม Pseudomonas spp.

รูปที่ 2 ลำดับชั้นและวัสดุที่บรรจุในหน่วยทดลอง
4.5 วิเคราะห์ความแปรปรวน (analysis of variance; ANOVA) เพื่อหาความแตกต่างของค่าเฉลี่ยข้อมูล ที่ได้จากการศึกษา และเปรียบเทียบค่าเฉลี่ยเชิงซ้อนเพื่อจัดกลุ่มค่าเฉลี่ยข้อมูลที่ได้จากการศึกษาด้วยวิธี Duncan's new Multiple's Range Test (DMRT)

ผลการวิจัย

จากการศึกษาการบำบัดฟอร์มัลดีไฮด์ในน้ำเสียสังเคราะห์โดยการดูดซับด้วยถ่านกกกลมและถ่านธูปฤาษีผสมดิน ร่วมกับระบบหญ้ากรองน้ำเสียและระบบพื้นที่ชุ่มน้ำเทียม ได้ผลดังนี้

1. ผลการตรวจวิเคราะห่คุณลักษณะของถ่านชีวภาพ

จากผลการตรวจวิเคราะห์คุณลักษณะของถ่านชีวภาพด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด และวิเคราะห์ หาพื้นที่ผิวและปริมาตรรูพรุนทั้งหมดด้วยเครื่องวัดพื้นที่ผิวและขนาดรูพรุน ใช้วิธี BET ผลดังรูปที่ 3 และตารางที่ 1

รูปที่ 3 ลักษณะพื้นผิวของถ่านกกกลม (ก) ถ่านธูปฤาษี (ข) โดยใช้เครื่อง SEM กำลังขยาย 5,000 เท่า
ตารางที่ 1 ผลการวิเคราะห์พื้นที่ผิว และปริมาตรรูพรุนทั้งหมด ของตัวดูดซับด้วยวิธี BET

ชนิดตัวดูดซับ	พื้นที่ผิว (มม/ก.)	ปริมาตรรูพรุน ทั้งหมด (ซม 3 /ก.)	ขนาดเส้นผ่าน ศูนย์กลางูรุน เฉลี่ย (\mathbf{A}°)
ถ่านกกกลม	17.13	2.41	56.34
ถ่านธูปฤาษี	15.55	2.16	55.70

ผลการวิเคราะห์หาพื้นที่ผิวและปริมาตรรูพรุนทั้งหมดของตัวดูดซับทั้ง 2 ชนิด แสดงได้ดังตารางที่ 1 โดยถ่านกกกลมมีปริมาตรรูพรุนมากกว่าและขนาดรูพรุนที่ใหญ่กว่าถ่านธูปฤฤษี ทั้งนี้องค์ประกอบของถ่านกกกลมและถ่าน ธูปฤษี่างมีเส้นใยที่เชื่อมต่อกันเป็นร่างแหตาข่ายจำนวนมากส่งผลให้ลักษณะของรูพรุนคล้ายร่างแหที่ซ้อนทับกันหลายชั้น ดังนั้นการดูดซับส่วนใหญูจึงมีโอกาสเกิดขึ้นภายในรูพรุนมากกว่า ซึ่งรูพรุนที่มีเส้นผ่านศูนย์กลางมากกว่า 20 อังสตรอม จะดูดซับสารที่มีโมเลกุลขนาดใหญ่ได้ดีกว่าถ่านที่มีขนาดรูพรุนเล็ก (Bansal et al., 1998)
2. ผลการทดลองแบบคอลัมน์ จากการทดลองที่ 1 เพื่อศึกษาอัตราส่วนโดยน้ำหนักของถ่านต่อดิน และวิธีการ บำบัดที่ให้ประสิทธิภาพในการบำบัดฟอร์มัลดีไฮด์ได้ดีที่สุด ได้ผลดังนี้

ผลการทดลองที่ 1.1 ผลการศึกษาอัตราส่วนโดยน้ำหนักของถ่านแต่ละชนิดต่อดิน โดยใช้วิธีบำบัด เลียนแบบระบบหญ้ากรองน้ำเสีย ดังตารางที่ 2

ตารางที่ 2 ความสัมพันธ์ระหว่างอัตราโดยน้ำหนักของส่วนถ่านแต่ละชนิดต่อดิน ปริมาณฟอร์มัลดีไฮด์คงเหลือ และประสิทธิภาพการบำบัดฟอร์มัลดีดไฮด์

ถ่านชีวกาพ		อัตราぬ่วนถ่าน:ติน					
		1:10	1:20	1:30	1:40	1:50	1:60
ถ่านกกกลม	FM คงเหซีอ (มก/จ.)	0.42	0.64	0.80	0.85	0.98	1.14
		0.54	0.61	0.87	0.88	0.99	1.16
		0.53	0.78	0.82	0.84	1.01	1.17
	ค่าเฉหี่ย	0.50	0.68	0.83	0.86	0.99	1.16
	ค่า S.D.	0.07	0.09	0.04	0.02	0.02	0.02
	ร้อยฐะการบำบัด	$97.51{ }^{\text {" }}$	$96.62{ }^{2}$	$95.87{ }^{\text {" }}$	$95.72{ }^{\text {2 }}$	$95.04{ }^{\text {" }}$	$94.22{ }^{2}$
ถ่านฐูปฤาษี	FM ¢งเหตีอ (มก/จ.)	1.09	1.09	1.21	1.27	1.38	1.99
		1.03	1.15	1.14	1.37	1.30	2.07
		1.10	1.18	1.19	1.36	1.33	2.04
	ค่าเฉลี่ย	1.07	1.14	1.18	1.33	1.34	2.03
	ค่า S.D.	0.04	0.05	0.04	0.06	0.04	0.04
	ร้อยฐะการบำบัด	$94.66^{\prime \prime}$	$94.32{ }^{\text {2 }}$	$94.12{ }^{\text {e }}$	$93.34{ }^{\text {a }}$	$93.31{ }^{\text {" }}$	89.86

หมายเหตุ FM : Formaldehyde
a และ b : แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติที่ระดับนัยสำคัญ $(\mathrm{P}<0.05)$

จากตารงทที่ 2 พบว่า ในแต่ละอัตราส่วนของถ่านกกกลมผสมดิน ประสิทธิภาพการบำบัด ฟอร์มัล ดีไฮด์ในน้ำเสียสังเคราะห์มีค่าไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ $(\mathrm{P}<0.05)$ กับอัตราส่วนอื่น ๆ โดยอัตราส่วน โดยน้ำหนักของถ่านกกกลมต่อดิน $1: 50$ เป็นอัตราส่วนที่เหมาะสมสำหรับการทดลองขั้นต่อไป เนื่องจากเป็นอัตราส่วน ที่ใช้ถ่านน้อยแต่มีประสิทธิภาพในการบำบัดฟอร์มัลดีไฮด์สูง คือร้อยละ 95.04 และเหลือปริมาณฟอร์มัลดีไฮด์เฉลี่ย 0.99 มิลลิกรัม/ลิตร ซึ่งอยู่ในเกณฑ์มาตรฐานน้ำทิ้งอุตสาหกรรมที่กำหนดคือ ไม่เกิน 1.0 มิลลิกรัม/ลิตร สำหรับการบำบัด จะมีแนวโน้มลดลง เมื่อเพิ่มอัตราส่วนของดินมากขึ้น เนื่องจากถ่านกกกลมทำหน้าที่หลักในการดูดซับฟอร์มัลดีไฮด์ แต่เมื่อเพิ่มปริมาณของดินจึงเท่ากับเป็นการลดปริมาณถ่านกกกลมที่เป็นตัวดูดซับ

สำหรับอัตราส่วนของถ่านธูปฤาษีผสมดิน ประสิทธิภาพการบำบัดฟอร์มัลดีไฮด์ในน้ำเสียสังเคราะห์ มีค่าใกล้เคียงกัน ประสิทธิภาพการดูดซับฟอร์มัลดีไฮด์มีแนวโน้มลดลง เช่นเดียวกับถ่านกกกลมเมื่อเพิ่มอัตราส่วนของดิน และพบว่าอัตราส่วนโดยน้ำหนักของถ่านธูปฤาษีต่อดิน เท่ากับ $1: 50$ เป็นอัตราส่วนที่มีประสิทธิภาพการบำบัดฟอร์มัลดีไฮด์สูง ไม่แตกต่างอย่างมีนัยสำคัญกับอัตราส่วน $1: 10-1: 40$ แต่แตกต่างอย่างมีนัยสำคัญกับอัตราส่วน $1: 60$ และน้ำเสียที่ผ่านการ บำบัดทุกอัตราส่วน มีปริมาณฟอร์มัลดีไฮด์โดยเฉลี่ยสูงกว่ามาตรฐูานน้ำทิ้งที่กำหนด

ดังนั้นผู้วิจัยจึงเลือกอัตราส่วนถ่านแต่ละชนิดต่อดิน เท่ากับ $1: 50$ เป็นอัตราส่วนที่เหมาะสม สำหรับการทดลองที่ 1.2 ต่อไป เพื่อง่ายต่อการเปรียบเทียบสำหรับวิธีบำบัดเลียนแบบระบบพื้นที่ชุ่มน้ำเทียม ตามหลักการ ของโครงการแหลมผักเบี้ยฯ เนื่องจากเป็นอัตราส่วนที่ใช้ถ่านน้อยแต่มีประสิทธิภาพในการบำบัดฟอร์มัลดีไฮด์สูงและไม่แตกต่าง อย่างมีนัยสำคัญของถ่านแต่ละชนิดที่อัตราส่วนเดียวกันนี้ ระบบพื้นที่ชุ่มน้ำเทียม

จากการทดลองโดยใช้ถ่านแต่ละชนิดผสมกับดินในอัตราส่วนโดยน้ำหนักที่ได้จากการทดลอง ที่ 1.1 คือ $1: 50$ น้ำหนักสุทธิ 400 กรัม บรรจุในคอลัมน์แต่ละคอลัมน์ เติมน้ำเสียสังเคราะห์ที่มีความเข้มข้นฟอร์มัลดีไฮด์ เท่ากับ 20 มิลลิกรัม/ลิตร ปรับอัตราการไหลเท่ากับ 10 มิลลิลิตร/นาที เก็บน้ำตัวอย่างที่ไหลผ่านออกมาทุก 50 มิลลิลิตร นำมาวิเคราะห์ปริมาณฟอร์มัลดีไฮด์ โดยจะผ่านน้ำเสียสังเคราะห์จนกระทั่งประสิทธิภาพดูดซับลดลงจนคงที่ เขียน breakthrough curve ของถ่านกกกลมผสมดิน และถ่านธูปฤาษีผสมดิน ได้ดังรูปที่ 4 พบว่า เมื่อมีการปล่อยน้ำเสียไหล ผ่านคอลัมน์ที่บรรจุตัวดูดซับอย่างต่อเนื่อง ตัวดูดซับจะอิ่มตัวและหมดสภาพไปในที่สุด โดยตัวดูดซับทั้ง 2 ชนิด พบว่า ที่จุด A และ B เป็นจุดที่ตัวดูดซับเริ่มหมดประสิทธิภาพในการดูดซับ

รูปที่ 4 ความสัมพันธ์ระหว่างปริมาตรน้ำที่ใหลผ่านคอลัมน์ที่บรรจุตัวดูดซับและความเข้มข้นฟอร์มัลดีไฮด์ที่เหลือ ตารางที่ 3 ปริมาตรของน้ำเสียสังเคราะห์ที่จุดตัวดูดซับเริ่มหมดสภาพและหมดสภาพของตัวดูดซับ 2 ชนิด ที่อัตราการไหล 10 มิลลิลิตร/นาที

ชนิดตัวดูดซับ	ปริมาตรน้ำเสียสังเคราะห์ (มล.)	
	จุดเริ่มหมดสภาพ การดูดซับ	จุดหมดสภาพ การดูดซับ
ถ่านกกกลมผสมดิน 1:50	300	2,950
ถ่านธูปถาษีผสมดิน 1:50	200	1,200

จากตารางที่ 3 จะเห็นว่า ถ่านกกกลมผสมดินเริ่มหมดสภาพช้ากว่าถ่านฐูปฤาษีผสมดิน โดยมี จุดเริ่มหมดสภาพ หรือจุดที่เริ่มตรวจพบฟอร์มัลดีไฮด์เมื่อปริมาตรน้ำเสียไหลผ่านออกมา เท่ากับ 300 มิลลิลิตร และจุดหมด สภาพ หรือจุดที่ถ่านกกกลมผสมดินไม่สามารถดูดซับฟอร์มัลดีไฮด์ได้แล้วเมื่อปริมาตรน้ำเสียไหลผ่านออกมา เท่ากับ 2,950 มิลลิลิตร เนื่องจากถ่านกกกลมมีพื้นที่ผิว และปริมตรรูพรุนที่มากกว่า (ตารางที่ 1) รวมถึงลักษณะรูพรุนของถ่านกกกลม มีขนาดที่ไม่สม่ำเสมอ และขนาดรูพรุนที่ใหญ่กว่า (รูปที่ 3) จึงทำให้การดูดซับเกิดขึ้นได้ดีภายในรูพรุนมากกว่านั่นเอง

ทั้งนี้การทดลองแบบไหลต่อเนื่อง เป็นการทดลองเพื่อหาอายุการใช้งานของตัวดูดซับที่มีความเป็นไปได้ในการดูดซับก่อน จะหมดประสิทธิภาพ เมื่อตัวถูกดูดซับไหลผ่านตัวดูดซับ ตัวดูดซับชั้นบนจะหมดประสิทธิภาพการดูดซับก่อน และชั้นของ ตัวดูดซับที่หมดประสิทธิภาพจะเพิ่มขึ้นเรื่อย ๆ ตามเวลาการใช้งาน โดยเวลาการใช้งานของตัวดูดซับขึ้นอยู่กับพื้นที่ผิว จำเพาะของตัวดูดซับ อัตราการไหล และความเข้มข้นของสารที่ถูกดูดซับ และเมื่อตัวดูดซับไม่สามารถที่จะดูดซับได้อีก เรียกจุดนี้ว่า จุดที่ตัวดูดซับหมดสภาพ (Clark and Lykins, 1999) ดังนั้นผู้วิจัยจึงเลือกถ่านกกกลมผสมดิน ในอัตรา ส่วน $1: 50$ เป็นวัสดุปลูกพืชในระบบหญ้ากรองน้ำเสียและระบบพื้นที่ชุ่มน้ำเทียม ในการทดลองที่ 2 ต่อไป เนื่องจาก สามารถดูดซับฟอร์มัลดีไฮด์ได้เป็นระยะเวลานานที่สุด
3. ผลการศึกษาในหน่วยทดลองขนาดเล็ก จากการทดลองที่ 2 ศึกษาการบำบัดฟอร์มัลดีไฮด์โดยใช้หน่วยทดลอง ขนาดเล็ก เพื่อเปรียบเทียบชนิดของพืช และวิธีการบำบัดที่ให้ประสิทธิภาพดีที่สุด มีผลการทดลอง ดังนี้

ผลการทดลองที่ 2.1 ผลการบำบัดฟอร์มัลดีไฮด์ด้วยระบบหญ้ากรองน้ำเสียโดยใช้หน่วยทดลองขนาดเล็ก เมื่ออัตราการเจิญเติบโตของพืชเท่ากับศูนย์เป็นระยะเวลาศึกษา 5 สัปดาห์ พบว่า ทุกหน่วยทดลองสมมารถบำบัดฟอร์มัลดีไฮด์ ได้สูงสุดในสัปดาห์ที่ 1 ดังตารางที่ 4

ตารางที่ 4 ร้อยละการบำบัดฟอร์มัลดีไฮด์ในหน่วยทดลองของการบำบัดด้วยระบบหญ้ากรองน้ำเสีย

สัปดาห์ที่	ร้อยละการบำบัดฟอร์มัลดีไฮด์			
	หน่วยทดลองที่บรรจุชั้นถ่าน กกกลมผสมดินอัตราส่วน $1: 50$		หน่วยทดลองที่บรรจุชันดินอย่างเดียว	
	ปลูกต้นกกกลม	ปลูกต้นธูปฤาษี	ปลูกต้นกกกลม	ปลูกต้นธูปฤาษี
1	$99.55^{\text {a }}$	$96.35^{\text {b }}$	78.00^{6}	$68.67^{\text {d }}$
2	$98.55^{\text {a }}$	$96.17^{\text {b }}$	$77.40^{\text {c }}$	$64.67^{\text {d }}$
3	97.90^{3}	$95.85{ }^{\text {b }}$	$76.00{ }^{\text {c }}$	$62.67{ }^{\text {d }}$
4	97.66^{6}	$95.42^{\text {b }}$	72.00°	$56.67^{\text {d }}$
5	$97.20^{\text {a }}$	$95.35^{\text {b }}$	66.00°	$52.67^{\text {d }}$

หมายเหตุ a, b และ c : แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติที่ระดับนัยสำคัญ $(\mathrm{P}<0.05)$

จากตารางที่ 4 พบว่า หน่วยทดลองที่บรรจุชั้นถ่านกกกลมผสมดินและปลูกต้นกกกลม มีประสิทธิภาพการบำบัดฟอร์มัลดีไฮด์ได้สูงสุด โดยพบฟอร์มัลดีไฮด์คงเหลือ 0.09 มิลลิกรัม/ลิตร ในสัปดาห์ที่ 1 (ตารางที่ 5) และทุกสัปดาห์ของหน่วยทดลองที่บรรจุชั้นถ่านกกกลมผสมดินปลูกต้นกกกลมสามารถบำบัดฟอร์มัลดีไฮด์ ได้สูงสุดเมื่อเปรียบเทียบกับหน่วยทดลองอื่น และน้ำที่ผ่านการบำบัดอยู่ในเกณฑ์มาตรฐฐนน้ำทิ้งอีกด้วย และยังพบว่า น้ำที่ผ่านการบำบัดจากหน่วยทดลองที่บรรจุชั้นถ่านกกกลมผสมดินปลูกต้นธูปฤาษีอยู่ในเกณฑ์มาตรฐานน้ำทิ้งเช่นเดียวกัน

ตารางที่ 5 ความเข้มข้นฟอร์มัลดีไฮด์ที่เหลือ ในหน่วยทดลองของการบำบัดด้วยระบบหญ้ากรองน้ำเสีย

สัปดาห์ที่	ความเข้มข้นฟอร์มัลดีไฮด์ (มก./ล.)			
	หน่วยทดลองที่บรรจุชั้นถ่าน กกกลมผสมดินอัตราส่วน 1:50		หน่วยทดลองที่บรรจุชั้นดินอย่างเดียว	
	ปลูกต้นกกกลม	ปลูกต้นธูปฤาษี	ปลูกต้นกกกลม	ปลูกต้นธูปฤาษี
1	0.09	0.73	4.40	6.27
2	0.29	0.77	4.52	7.07
3	0.42	0.83	4.80	7.47
4	0.47	0.92	5.60	8.67
5	0.56	0.93	6.80	9.47

สำหรับอัตราการระเหยของฟอร์มัลดีไฮด์ที่ผิวน้ำของหน่วยทดลองขณะทำการทดลองโดยวัดตั้งแต่ เริ่มต้นและทุก ๆ 5 นาที เหนือผิวน้ำ 5 เซนติเมตร ได้ผลดังรูปที่ 5

รูปที่ 5 การระเหยฟอร์มัลดีไฮด์ในหน่วยทดลองของระบบหญ้ากรองน้ำเสีย

จากรูปที่ 5 พบว่า แนวโน้มการระเหยของฟอร์มัลดีไฮด์ที่ผิวน้ำในหน่วยทดลองของระบบหญ้ากรอง น้ำเสีย มีแนวโน้มลดลงจนตรวจไม่พบ โดยหน่วยทดลองที่บรรจุชั้นถ่านกกกลมผสมดินปลูกต้นกกกลม ต้นซูปถาษี และ หน่วยทดลองที่บรรจุัน้นดินอย่างเดียวปลูกต้นกกกลม และต้นธูปฤาษี ตรวจไม่พบการระเหยของฟอร์มัลดีใฮด์เมื่อระยะเวลา ผ่านไป $150,240,330$ และ 360 นาที ตามลำดับ โดยการระเหยของฟอร์มัลดีไฮด์ออกจากแต่ละหน่วยทดลองในรอบสัปดาห์ เท่ากับ $0.42,0.48,0.86$ และ 0.85 มิลลิกรัม/ลิตร ตามลำดับ คิดเป็นร้อยละ $2.1,2.4,4.3$ และ 4.3 ตามลำดับ ทั้ง นี้โดยปกติมนุยย์สามารถได้กลิ่นฟอร์มัลดีไฮด์ที่กระจายอยู่ในอากาศที่ความเข้มข้น 1.0 มิลลิกรัม/ลิตร ขึ้นไปและช่วงชีวิตของ ฟอร์มัลดีไฮด์ในบรรยากาศนั้นมีค่าอยู่ระหว่าง $7.1-71.3$ ชั่วโมง และการสลายฟอร์มัลดีไฮด์ พบว่า รังสียูีีามารถสลายโมเลกุล ฟอร์มัลดีดฮด์ได้ ขึ้นอยู่กับความเข้มแสง และอุณหภูมิ และฟอร์มัลดีไฮด์ยังถูกสลายในชั้นโทรโพสเฟียร์ระดับล่างโดยทำปฏิกิริยา กับอนุมูลอิสระของไฮดรอกซิล OH ได้ผลิตภัณฑ์เป็นน้ำ $\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Moortgat et al., 1998) ดังนั้นฟอร์มัลดีไฮด์ที่ระเหย ในความเข้มข้นที่น้อยนั้นจึงสามารถสลายได้ในบรรยากาศนั่นเอง

จากรูปที่ 5 พบว่า แนวโน้มการระเหยของฟอร์มัลดีไฮด์ที่ผิวน้ำในหน่วยทดลองของระบบหญ้า กรองน้ำเสีย มีแนวโน้มลดลงจนตรวจไม่พบ โดยหน่วยทดลองที่บรรจุชั้นถ่านกกกลมผสมดินปลูกต้นกกกลม ต้นธูปฤาษี และหน่วยทดลองที่บรรจุชั้นดินอย่างเดียวปลูกต้นกกกลม และต้นธูปฤาษี ตรวจไม่พบการระเหยของฟอร์มัลดีไฮด์ เมื่อระยะเวลาผ่านไป $150,240,330$ และ 360 นาที ตามลำดับ โดยการระเหยของฟอร์มัลดีไฮด์ออกจากแต่ละหน่วยทดลอง ในรอบสัปดาห์ เท่ากับ $0.42,0.48,0.86$ และ 0.85 มิลลิกรัม/ลิตร ตามลำดับ คิดเป็นร้อยละ $2.1,2.4,4.3$ และ 4.3 ตามลำดับ ทั้งนี้โดยปกติมนุษย์สามารถได้กลิ่นฟอร์มัลดีไฮด์ที่กระจายอยู่ในอากาศที่ความเข้มข้น 1.0 มิลลิกรัม/ลิตร ขึ้นไปและช่วงชีวิตของฟอร์มัลดีไฮด์ในบรรยากาศนั้นมีค่าอยู่ระหว่าง $7.1-71.3$ ชั่วโมง และการสลายฟอร์มัลดีไฮด์ พบว่า รังสียูวีสามารถสลายโมเลกุลฟอร์มัลดีไฮด์ได้ ขึ้นอยู่กับความเข้มแสง และอุณหภูมิ และฟอร์มัลดีไฮด์ยังถูกสลายในชั้น โทรโพสเฟียร์ระดับล่างโดยทำปฏิกิริยากับอนุมูลอิสระของไฮดรอกซิล OH ได้ผลิตภัณฑ์เป็นน้ำ $\left(\mathrm{H}_{2} \mathrm{O}\right)($ Moortgat et al., 1998) ดังนั้นฟอร์มัลดีไฮด์ที่ระเหยในความเข้มข้นที่น้อยนั้นจึงสามารถสลายได้ในบรรยากาศนั่นเอง

ผลการทดลองที่ 2.2 ผลการบำบัดฟอร์มัลดีใฮด์ด้วยระบบพื้นที่ชุ่มน้ำเทียมโดยใช้หน่วยทดลองขนาดเล็ก เมื่อปล่อยน้ำเสียเข้าสู่หน่วยทดลองแบบต่อเนื่องด้วยอัตราการไหลที่แตกต่างกัน พบว่า ในระยะเริ่มต้นทุกหน่วยทดลอง ตรวจไม่พบฟอร์มัลดีไฮด์ในน้ำหลังจากผ่านการบำบัด เนื่องจากวัสดุปลูกมีอัตราการดูดซับฟอร์มัลดีไฮด์มากกว่าอัตราคายซับ จนถึงระยะเวลาหนึ่งที่มีปริมาตรน้ำเสียสังเคราะห์ไหลผ่านมากขึ้นจึงเริ่มตรวจพบฟอร์มัลดีไฮด์ (ตารางที่ 6) และเมื่อถึง จุดสมดุลของอัตราการดูดซับเท่ากับอัตราการคายซับ ประสิทธิภาพการบำบัดจะมีแนวใน้มคงที่ ดังรูปที่ 6 รวมถึงภายในหน่วย ทดลองยังมีการทำงานร่วมกันของจุลินทรีย์ที่มีความสัมพันธ์กับการย่อยสลายฟอร์-มัลดีไฮด์และพืชที่ใช้บำบัดอีกด้วย (ตารางที่ 11) แต่ยังคงมีปริมาณฟอร์มัลดีไฮด์บางส่วนที่คงเหลือจากการบำบัด จึงตรวจพบฟอร์มัลดีไฮด์เมื่อปริมาตร น้ำเสียสังเคราะห์ไหลผ่านหน่วยทดลองมากขึ้น

รูปที่ 6 ความสัมพันธ์ระหว่างความเข้มข้นฟอร์มัลดีไฮด์และปริมาตรน้ำที่ไหลผ่านหน่วยทดลองที่อัตรา การไหล 100 มิลลิลิตร/นาที (ก) 300 มิลลิลิตร/นาที (ข) และ 500 มิลลิลิตร/นาที (ค)

ตารางที่ 6 ปริมาตรของน้ำเสียสังเคราะห์ที่จุดตัวดูดซับเริ่มหมดสภาพของหน่วยทดลอง

อัตราการไหล (มล/นาที) หน่วยทตลอง	ปริมาตน้ำเสียสังเคราะห์ที่จุดเร็มหมดสภาพการดูดชับ (ลิตร)		
	100	300	500
หน่วยทดลองที่ปจูกต้นกกกลม	20	15	7
หน่วยบตผองที่ปลูกต้นจูปษาษี	20	12	8
หน่วยบตตองษุดศวบคุม	10	8	7

จากตารางที่ 6 พบว่า หน่วยทดลองที่ปลูกต้นกกกลมเริ่มหมดสภาพช้าที่สุด ที่อัตราการไหล 100 และ 300 มิลลิลิตร/นาที เมื่อปริมาตรน้ำเสียสังเคราะห์ใหลผ่าน เท่ากับ 20 และ 15 ลิตร ตามลำดับ จึงเริ่มตรจจพบ ฟอร์มัลดีไฮด์ในน้ำที่ผ่านการบำบัด เมื่อพิจารณาถึงปริมาตรน้ำเสียสังเคราะห์ทั้งหมดที่ไหลผ่านหน่วยทดลองจนกระทั่งอัตรา การเจิญญเติบโตของพืชเท่ากับศูนย์ เป็นระยะเวลา 40 วัน ของทุกหน่วยทดลอง พบปริมาณฟอร์มัลดีใฮด์ทั้งหมด และระยะ เวลาเก็บกักของหน่วยทดลองแต่ละอัตราการไหล ดังตารางที่ 7 และแต่ละหน่วยทดลองสามารถบำบัดฟอร์-มัลดีไฮด์ และ มีปริมาณฟอร์มัลดีไฮด์คงเหลือ ดังตารางที่ 8

ตารางที่ 7 ปริมาตรน้ำเสียสังงคราะห์ทั้งหมด ปริมาณฟอร์มัลดีไฮด์ทั้งหมดที่ใหลผ่านหน่วยทดลอง

ปัชจัยที่ศึกษา	อัตราการไหล (มล./นาที)		
	100	300	500
ปริมาตรน้ำเลียชังเคราะห์ั้งหมด (สิตร)	5,760	17,280	28,800
ปรูาณฟอรัมูตีไปต์ทั้งหมด (มก.)	115,200	345,600	576,000
ระยะเวลาเก็บกัก (รม.)	6.67	2.22	1.33

ตารางที่ 8 ปริมาณฟอร์มัลดีไฮด์ที่ถูกบำบัดและปริมาณฟอร์มัลดีไฮด์คงเหลือของหน่วยทดลอง

จัตราการไหล (มล/นาที) หน่วยทตตอง	ปริมาณฟอร์มัดตีไฮต์ที่ถูกบ์ำบัด (มก.)			ปริมาณฟอร์มัลตีไฮต์คงเหลือ (มก.)		
	100	300	500	100	300	500
หน่วยทดละงที่นจูกตันกกกลม	109,267	295,661	449,856	5,933	49,939	117,144
หน่วยทตละงที่ไูกต้นฐูปๆา	108,691	295,315	446,112	6,509	50,285	120,888
หน่วยทตละงจุดควบุุม	103,795	276,480	404,352	11,405	69,120	162,648

จากตารางที่ 8 พบว่า หน่วยทดลองที่ปลูกต้นกกกลม สามารถบำบัดฟอร์มัลดีไฮด์ได้สูงที่สุด ทุกอัตราการไหล และมีปริมาณฟอร์มัลดีไฮด์คงเหลือน้อยที่สุด เมื่อเปรียบเทียบกับหน่วยทดลองอื่น และเมื่อนำข้อมูล ที่ได้มาพิจารณาถึงอัตราการบำบัดฟอร์มัลดีไฮด์ของหน่วยทดลองที่ปลูกต้นกกกลม พบว่า ที่อัตราการไหล 100,300 และ 500 มิลลิลิตร/นาที มีอัตราการบำบัดฟอร์มัลดีไฮด์เท่ากับ $1.90,5.13$ และ 7.81 มิลลิกรัม/นาที่ ตามลำดับ จะเห็นว่า ที่อัตราการไหล 500 มิลลิลิตร/นาที มีอัตราการบำบัดสูงสุด แต่ทั้งนี้ก็พบปริมาณฟอร์มัลดีไฮด์คงเหลือในหน่วยทดลองสูง เช่นเดียวกัน เนื่องจากมีระยะเวลาเก็บกักที่สั้น จึงให้ประสิทธิภาพการบำบัดต่ำกว่อัตราการไหล ดังตารางที่ 9

สำหรับประสิทธิภาพการบำบัดฟอร์มัลดีไฮด์ของทุกหน่วยทดลองจนกระทั่งอัตราการเจริญเติบโต ของพืชทุกหน่วยทดลองเท่ากับศูนย์ และความเข้มข้นฟอร์มัลดีไฮด์ที่เหลือโดยเฉลี่ย ของหน่วยทดลองระบบพื้นที่ชุ่มน้ำ เทียม ดังตารางที่ 9

ตารางที่ 9 ความเข้มข้นฟอร์มัลดีไฮด์ที่เหลือและประสิทธิภาพการบำบัดโดยเฉลี่ยของหน่วยทดลอง

อัตราการไหล (มล./นาที)	ความเข้มข้นฟอร์มัดตีไฮด๋โดยเฉลี่ย (มก./ฉ.)			ร้อยละการบ่าบัด		
หน่วยทดลอง	100	300	500	100	300	500
หน่วยทดตองที่ปสูกต้นกกกลม	1.03	2.89	4.38	94.85	85.55	78.10
หน่วยทดลองที่ปสูกตฺ้นฐูๆาษี	1.13	2.91	4.51	94.35	85.45	77.45
หน่วยทดลองชุดควบคุม	1.98	4.00	5.96	90.10	80.00	70.20

จากตารางที่ 9 หน่วยทดลองที่ปลูกต้นกกกลม ที่อัตราการไหล 100 มิลลิลิตร/นาที พบฟอร์มัลดีไฮด์ในน้ำสสียหลังจากผ่านการบำบัดน้อยที่สุด คือ 1.03 มิลลิกรัม/ลิตร คิดเป็นร้อยละการบำบัด เท่ากับ 94.85 และพบว่าทุกอัตราการไหลหน่วยทดลองที่ปลูกพืชสามารถบำบัดฟอร์มัลดีไฮด์ได้ดีกว่าหน่วยทดลองชุดควบคุมที่ไม่มี การปลูกพืช ทั้งนี้ทุกหน่วยทดลอง และทุกอัตราการไหลไม่พบการระเหยของฟอร์มัลดีใฮด์ตลอดการทดลอง เนื่องจาก เมื่อปล่อยให้น้ำเสียสังเคราะห์เข้าสู่หน่วยทดลอง น้ำเสียมีการซึมผ่านชั้นวัสดุปลูกอย่างต่อเนื่องในแนวดิ่ง น้ำไม่เกิดการ ขังแช่ทิ้งไว้เหมือนระบบหญ้ากรองน้ำเสียนั่นเอง

เมื่ออัตราการเจริญเติบโตของพืชเท่ากับศูนย์ พบจำนวนต้นกกกลมมีการแตกต้นใหม่เป็นจำนวน มากกว่าต้นธูปฤาษี ที่อัตราการไหล 100,300 และ 500 มิลลิลิตร/นาที ดังตารงงที่ 10 ทำให้หน่วยทดลองที่ปลูกต้นกกกกลม มีอัตราการดูดดึงสรอนินทรีย่ต่าง ๆ มาใช้เพื่อการเจริญเติบโตได้เป็นจำนวนมาก ส่งผลให้การหมดสภาพ หรืออายุการใช้งาน ยาวนานกว่าหน่วยทดลองที่ปลูกต้นธูปฤาษีนั่นเอง

ตารางที่ 10 จำนวนต้นพืชในหน่วยทดลองที่ปลูกต้นกกกลมและธูปฤายีที่อัตราการไหลต่างกัน

หน่วยทดลอง	อัตราการไหด (มต./นาที)	ชำนวนต้นพีฮทั้งหมด (ต้น)
หน่วยบตลองที่ปลูกห้นกกกลม	100	140
	300	132
	500	127
หน่วยบตลองที่ปลูกด้นจูปฤาษี	100	17
	300	19
	500	27

เมื่อวิเคราะห์หาจุลินทรียี่ที่ความสามารถในการย่อยสลายฟอร์มัลดีไฮด์ ได้แก่ จุลินทรีย์กลุ่ม Pseudomonas spp. ซึ่งสามารถย่อยสลายได้ดีภายในสภาวะที่มีออกซิเจน (Glancer et al., 2001) โดยปริมาณจุลินทรีย์ กลุ่ม Pseudomonas spp. ที่พบในหน่วยทดลอง ดังแสดงในตารางที่ 11

ตารางที่ 11 ปริมาณจุลินทรีย์กลุ่ม Pseudomonas spp. ที่พบในดินบริเวณรอบรากพืชของหน่วยทดลอง

หน่วยทดลอง	อัตราการไหส (มิผลิสิตร/นาที)	Pseudomonas spp. (โคโลนี/ติน 1 กรัม)
หน่วยทดลองที่ปถูกด้นกกกดม	100	1.8×10^{5}
	300	1.7×10^{5}
	500	1.6×10^{5}
หน่วยหดลองที่ปจูกดื่นฐูปฤาษี	100	1.2×10^{4}
	300	1.6×10^{5}
	500	1.3×10^{6}
หน่วยทตลองฐุศวบศุม	100	1.6×10^{3}
	300	1.2×10^{3}
	500	1.9×10^{4}

จากตารางที่ 11 พบว่า ปริมาณจุลินทรีย์กลุ่ม Pseudomonas spp. ในดินรอบรากพืชของ หน่วยทดลองที่ปลูกพืช มากกว่าในดินของหน่วยทดลองชุดควบคุม ทั้งนี้เนื่องจากพืชที่สามารถเจริญเติบโตได้ในดิน ที่มีลักษณะน้ำท่วมขัง จะมีความสามารถในการลำเลียงแก๊สออกซิเจนจากใบมาปลดปล่อยบริเวณราก (Rhizosphere) เพื่อใช้ในกระบวนการหายใจของราก และออกซิเจนที่มากเกินพอ จะถูกปลดปล่อยออกจากราก ทำให้บริเวณรอบรากมี แก๊สออกซิเจน ส่งผลให้จุลินทรีย์กลุ่ม Pseudomonas spp. ซึ่งเป็น Facultative anaerobes มีแหล่งออกซิเจนเพื่อใช้ เป็นตัวรับอิเล็กตรอนในกระบวนการย่อยสลายมากขึ้น (ธนิศร์, 2548) และจุลินทรีย์จะทำหน้าที่ในการย่อยสลายฟอร์มัลดีไฮด์ ซึ่งเป็นสารอินทรีย์ชนิดหนึ่งที่เป็นแหล่งคาร์บอนของจุลินทรีย์ เปลี่ยนไปเป็นสารอนินทรีซ์ซึ่งเป็นธาตุอาหารของพืช จากนั้น พืชจะใช้สารอนินทรีย์นี้เป็นธาตุอาหารเพื่อการเจริญเติบโต ดังนั้นหากพบปริมาณจุลินทรีย์มาก จะมีความสัมพันธ์กับกระบวนการ ย่อยสลายซึ่งจะเกิดขึ้นเป็นจำนวนมากเช่นกัน ส่งผลให้ปริมาณฟอร์มัลดีไฮด์ในหน่วยทดลองลดลงนั่นเอง

สรุปผลการวิจัย

การนำตัวดูดซับถ่านชีวภาพ คือ ถ่านกกกลม และถ่านธูปฤษี ผสมกับดินเป็นวัสดุปลูกในระบบบำบัดน้ำเสียแบบ อาศัยธรรมชาติช่วยธรรมชาติ เพื่อช่วยเพิ่มประสิทธิภาพในการบำบัดน้ำเสียที่มีฟอร์มัลดีไฮด์ปนเปื้อน

จากการทดลองแบบการไหลต่อเนื่อง ทดลองกับน้ำเสียสังเคราะห์ที่มีความเข้มข้นฟอร์มัลดีไฮด์ 20 มิลลิกรัม/ลิตร พบว่า สภาวะที่เหมาะสมคือ อัตราส่วนของถ่านชีวภาพต่อดิน เท่ากับ $1: 50$ ได้ร้อยละการดูดซับเท่ากับ 95.04 และ 93.31 ตามลำดับ ของถ่านกกกลม และถ่านธูปฤาษี ที่ผสมดินตามลำดับ และที่อัตราการไหล 10 มิลลิลิตร/นาที ได้เบรคทรูจ์ทเคอร์ฟ ที่มีจุดเริ่มหมดสภาพ เท่ากับ 300 และ 200 มิลลิลิตร ตามลำดับ และจุดหมดสภาพ เท่ากับ 2,950 และ 1,200 มิลลิลิตร ตามลำดับ ทั้งนี้ถ่านกกกลมเป็นตัวดูดซับฟอร์มัลดีไฮด์ได้ดีกว่าถ่านธูปฤาษี

เมื่อทำการจำลองระบบหญ้ากรองน้ำเสียและระบบพื้นที่ชุ่มน้ำเทียมในหน่วยทดลองขนาดเล็ก ตามหลักการของโครงการ แหลมผักเบี้ยๆ โดยเปรียบเทียบหน่วยทดลองในการบำบัดที่ปลูกพืช คือ ต้นกกกลม และต้นธูปฤาษี และวัสดุปลูกโดยใช้ ถ่านกกกลมผสมดินอัตราส่วน $1: 50$ พบว่า หน่วยทดลองที่ปลูกต้นกกกลม มีประสิทธิภาพในการกำจัดฟอร์มัลดีไฮด์ได้สูง สุดเท่ากับร้อยละ 99.55 ของระบบหญ้ากรองน้ำเสียในสัปดาห์ที่ 1 และระบบพื้นที่ ชุ่มน้ำเทียมสามารถกำจัดฟอร์มัลดีไฮด์ ได้โดยเฉลี่ยเท่ากับร้อยละ 94.85 ที่อัตราการไหล 100 มิลลิลิตร/นาที ตลอดอายุของพืช นอกจากนี้ในระบบพื้นที่ชุ่มน้ำ เทียม พบจุดเริ่มหมดสภาพ เท่ากับ 20 ลิตร และพบจุลินทรีย์ Pseudomonas spp.จำนวนมากในดินรอบรากพืช และไม่

พบการระเหยของฟอร์มัลดีไได์ ดังนั้นจากการพัฒนาระบบหญู้กรองน้ำเสียและระบบพื้นที่ชุ่งน้ำเทียมนี้มีกักยกาพที่สมารถ นำไปไช้บำบัดฟอร์มัลดีไชฉ์ในน้ำเสียได้

กิตติกรรมประกาศ

ขอขอบคุณโครงการศึกษาวิจัยและพัฒนาสิ่งแวดล้อมแหลมผักเบี้ยอันเนื่องมาจากพระราชดำริ และบริษัท ทีโอซี ไกลคอล จำกัด ที่ได้สนับสนุนทุนในการวิังย และเอื้อเฟื้อสถานที่ รวมถึงคณะสิ่แววล้อม มหวิทยาลัยเกษตรศาสตร์ ที่ได้อื้ออเฟื้อห้องปฏิบัติการ สำหรับการวิัยในครั้งนี้

เอกสรอ้างอิง

กรมควบคุมมลพิษ. (2551). ฟอร์มัลดีไฮด์. พิมพ์คั้งที่ 2 . กองจัดการสารอันตตายและกากของเสีย กรมควบคุมมลพิษ กระทรวงวิทยาศาสตร์ เทคโนโลยีแเละสิ่งแวดล้อม, กรุงเทพา.

โครงกาาศึกษาวิอัยและพัฒนาสิ่งแวดล้อมแหลมผักเบี้ยอันนนื่องมาจากพระราดดำริ. 2550. รายงนสรุปผลวิจัยโครงการึึกษา วิจัยและพัผนาสิ่งแวดล้อมแหลมผักเบี้ยอันเนื่องมาจาก พระราชดำริ. ตำบลแหลมผักเบี้ย อำเภอบ้านแหลม จังหวัดเพชรบุรี. มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพง.

นิพนธ์ ตังคณานุรักย์ และคณิตา ตังคณนนุรักษ์. (2550). หลักการการตรวจวิเคราะท์คุณภาพทางเคมี. สำนักพิมพ์ มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.

ธนิศร์ ปัทมพิทูร. (2548). การึกษยาแบคทีเรียรอบรากพุทธรักยาธรรมรักยาและงิงแดงที่มีผลต่อประสิทธิกาพการบำบัด น้ำเสียชุมชนเทศบาลเมืองเพชรบุรี จังหวัดเพชรบุรี. วิทยานิพนธ์ปริญูญาโท, มหาวิทยาลัยเกษตรศาสตร์.

Attia, A.A., Girgis, B.S. and Fathy, N.A. (2008). Removal of methylene blue by carbons derived from peach stones by $\mathrm{H}_{3} \mathrm{PO}_{4}$ activation: batch and column studies. DyesPigments 76, 282-289.

Bansal, R.C., Donnet, J.B. and Stoeckli, F. (1988). Active Carbon. Marcel Dekker,New York, (Chapter 1). Brais, N. (2008). United States Patent, 5,833,740

Chee, G.J., Nomura, Y. and Karube,I. (1999). Biosenser for the estimation of low biochemical oxygen demand. Anal Chem. Acta 379 : 185-191.

Clark, R.M. and Lykins, B.W. (1999). Granular Activated Carbon: Design Operation and Cost. Lewis Pub1. Michigan.

Fagnani, E., Melios, C.B., Pezza, L. and Pezza, H.R. (2002). Development of spectrophotometric method for the analysis of paraformaldehyde in commercial and industrial disinfectants. Ecl. Qům. (Sao Paulo), v.27.

Garrido, J.M., Mendez, R. and Lema, J.M. (2000). Treatment of wastewaters from a formaldehydeurea adhesives factory. Department of Chemical Engineering, University of Santiago de Compostela, Spain.

Glancer, M. (2001). Aerobic Degradation of Formaldehyde in Wastewater from the Production of Melamine Resins. Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, P.O.B. 625, HR-10 000 Zagreb, Croatia.

Guo, Y. and Rockstraw, D. A. (2006). Physical and chemical properties of carbons synthesized from xylem, cellulose, and Kraft lignin by $\mathrm{H}_{3} \mathrm{PO}_{4}$ activation. Carbon, 44(8): 14641475.

Henriet, J., Matijn A. and Povlsen H. H. (1995). Analysis of Technical and Formulated Pesticides.CIPAC HANDBOOK volume 1 c .

Hu C., Wang, G., Wu, C. and Wei, C. (2003). Oxidation treatment of formaldehyde-containing wastewater by electro-Fenton method. Environmental Science Institute, South China University of Technology, Guangzhou, China.

Hu, Z. H. and Yu, H. Q. (2006). Anaerobic digestion of cattail by rumen cultures. Waste Management, 26 (11) : 1222-1228.

Mirdamadi,S., Rajabi, A., Khalilzadeh, P., Norozian, D., Akbarzadeh, A. and Aziz Mohseni,F. (2005). Isolation of bacteria able to metabolize high concentrations of formaldehyde. Iranian Research Organization for Science \& Technology (IROST), Iran

Moortgat, G.K., Slemr, F., Seiler, W. and Warneck, P., (2008). Photolysis of formaldehyde:elative quantum yields of $\mathrm{H}_{2} \mathrm{O}$ and CO in the wavelength range 270-360 nm. Chem. phys. Lett., 54: 444-447.

[^0]: ภาควิชาวิทยาศาสตร์สิ่งแวดล้อม คณะสิ่งแวดล้อม มหาวิทยาลัยเกษตรศาสตร์ เลขที่ 50 ถ.งามวงศ์วาน แขวงลาดยาว เขตจตุจักร กรุงเทพง 10900 E-mail: Inspiration_PK @hotmail.com

