การกำจัดขยะมูลฝอยในประเทศไทย

 กี่กีขอบปง:เาเธน

โดยองค์กรปกครองส่วนท้องถิ่นถือเป็นหน่วยงานสำคัญที่มีหน้าที่รับผิดชอบในการจัดการขยะมูลฝอย ซึ่งองค์กร ภาครัฐัมักจะมีนโยบายและการบริหารจัดการขยะมูลฝอยที่มุ่งเน้นการกำจัดขยะมูลฝอยให้หมดไปจากพื้นที่ที่รับผิดชอบเป็น หลัก เช่น การสร้างศูนย์กำจัดขยะมูลฝอยรวม การสร้างบ่อฝังกลบขยะมูลฝอยอย่างถูกหลักสุขาภิบาล การสร้างเตาเผาขยะ มูลฝอย หรือการเก็บขนขยะมูลฝอยไปกำจัด เป็นต้น [2] การดำเนินการดังกล่าว หากมองในภาพรวมของปัญหาจะพบว่า เป็นการทำงานที่เน้นการแก้ปัญหาที่ปลายเหตุเพราะปริมาณขยะมูลฝอยที่จะต้องนำไปกำจัดจะมีปริมาณที่เพิ่มขึ้นตามจำนวน ประชากรที่เพิ่มขึ้น ตามค่านิยมและพฤติกรรมการบริโภคที่ไม่คำนึงถึงทรัพยากรและความคุ้มค่า ทำให้องค์กรปกครอง ส่วนท้องถิ่นจะต้องหาสถานที่ฝังกลบขยะมูลฝอยแห่งใหม่ เพราะสถานที่ฝังกลบขยะมูลฝอยเดิมเต็ม ประกอบกับการบริหาร จัดการสถานที่กำจัดขยะมูลฝอยที่ไม่ดีเพียงพอ ทำให้เกิดการร้องเรียนและปิดบ่อฝังกลบขยะมูลฝอย

1. สถานการณ่ขยะมูลฝอยในประเทศไทยปี 2555

ประเทศไทยมีปริมาณขยะมูลฝอยชุมชนที่เกิดขึ้นในปี พ.ศ. 2555 จำนวน 24.73 ล้านตัน เฉลี่ย 67,577 ตันต่อ วัน โดยมีปริมาณขยะมูลฝอยชุมชนที่ประชาชนนำมาทิ้งในถังขยะประมาณ 15.90 ล้านตัน องค์กรปกครองส่วนท้องถิ่น สามารถเก็บขนได้ประมาณ 11.90 ล้านตัน และสามารถนำไปกำจัดอย่างถูกหลักวิชาการประมาณ 5.83 ล้านตัน และมี ขยะมูลฝอยถูกนำกลับไปใช้ประโยชน์รวมกันประมาณ 5.28 ล้านตัน ส่วนที่เหลืออีกประมาณ 13.62 ล้านตันเป็นขยะมูล ฝอยตกค้างที่องค์กรปกครองส่วนท้องถิ่นรวบรวมนำไปกำจัดโดยวิธีการไม่ถูกต้อง เช่น เทกองหรือเผากลางแจ้ง [3] ดัง แสดงในรูปที่ 1

หน่วย : ถ้าน

รูปที่ 1 แผนภูมิการไหลของปริมาณขยะมูลฝอยปี พ.ศ. 2555
นอกจากนี้ยีงมีขยะมูลฝอยที่ตกค้างในพื้นที่ต่าง ๆ หรือการลักลอบนำไปทิ้งในบ่อดินเก่าหรือพื้นที่รกร้าง ซึ่งจะพบ เห็นได้ในพื้นที่ที่อยู่ห่างไกลหรือพื้นที่ของหน่วยงานองค์กรปกครองส่วนท้องถิ่นที่มีขนาดเล็ก ซึ่งระบบการเก็บรวบรวมยัง ไม่ครอบคลุมพื้นที่บริการและมีการกำจัดยังไม่ถูกหลักวิชาการ ส่งผลให้เกิดการตกค้างของขยะมูลฝอยในพื้นที่ สถานที่ กำจัดขยะมูลฝอยที่ดำเนินการอย่างถูกต้องตามหลักวิชาการที่ก่อสร้างแล้วเสร็จทั้งหมด 135 แห่ง ดังแสดงในตารางที่ 1 ประกอบด้วย [3]

- ระบบฝังกลบ (Landfill System: LS) จำนวน 116 แห่ง มีการเดินระบบ 98 แห่ง ส่วนระบบฝังกลบ 11 แห่ง หยุดเดินระบบเนื่องจากขยะมูลฝอยเต็มพื้นที่หรือเกิดข้อร้องเรียน และอีก 7 แห่ง ก่อสร้างแล้วเสร็จ แต่ไม่เคยเดิน ระบบได้ เนื่องจากองค์กรปกครองส่วนท้องถิ่นขาดความพร้อมและบางแห่งเกิดการต่อต้านจากประชาชน โดยองค์กรปกครอง

ส่วนท้องถิ่นดังกล่าวได้นำขยะมูลฝอยไปกำจัด ณ สถานที่กำจัดขยะมูลฝอยขององค์กรปกครองส่วนท้องถิ่นข้างเคียงหรือ จ้างเอกชนดำเนินการกำจัด

- ระบบผสมผสาน (Integrated System: IS) จำนวน 15 แห่ง เดินระบบอยู่ 14 แห่ง อีก 1 แห่ง หยุดเดิน ระบบ ได้แก่ องค์การบริหารส่วนจังหวัดชลบุรี เนื่องจากประชาชนต่อต้าน โดยองค์กรปกครองส่วนท้องถิ่นที่มากำจัดร่วม ได้นำขยะมูลฝอยไปกำจัด ณ สถานที่กำจัดขยะมูลฝอยขององค์กรปกครองส่วนท้องถิ่นข้างเคียง
- ระบบเตาเผา (Incinerator System: InS) เดินระบบทั้ง 3 แห่ง ได้แก่ เทศบาลนครภูเก็ต จังหวัดภูเก็ต องค์ การบริหารส่วนตำบลเกาะเต่า จังหวัดสุราษฎร์ธานี และเทศบาลนครเกาะสมุย จังหวัดสุราษฎร์ธานี

ตารางที่ 1 สถานที่กำจัดขยะมูลฝอยที่ถูกต้องตามหลักวิชาการ

ประเภทสถานที่กำจัด ขยะมูลฝออย	สถานภาพการเดินระบบของสถานที่กำจัดที่ก่อสร้างแล้วเสร็จ (แห่ง)			
	เดินระบบ	หยุดเดินระบบ	ไม่เคยเดินระบบ	รวม
สถานที่ฝังกลบ	98	11	7	116
ระบบผสมผสาน	15	1	0	16
ระบบเตาเผา	3	0	0	3
รวม	116	12	7	135

ที่มา: กรมควบคุมมลพิษ, 2556

2. องค์ประกอบขยะมูลฝอยในประเทศไทย

องค์ประกอบของขยะมูลฝอยเป็นลักษณะสมบัติทางกายภาพ (Physical characteristics) หมายถึง ส่วนประกอบ ต่าง ๆ ที่ประกอบกันเป็นขยะมูลฝอยทั้งหมด เช่น ผัก ผลไม้ และเศษอาหาร กระดาษ พลาสติก ผ้า ไม้ แก้ว โลหะ หิน กระเบื้อง กระดูกสัตว์ และเปลือกหอย ยางและหนัง และอื่น ๆ ดังแสดงในตารางที่ 2 และรูปที่ 2 แสดงตัวอย่างองค์ ประกอบของขยะมูลฝอย จากการสำรวจองค์ประกอบทางกายภาพของขยะมูลฝอยของจังหวัดกรุงเทพมหานคร อุดรธานี และภูเก็ต (รูปที่ 3 ถึงรูปที่ 5) พบว่า ขยะมูลฝอยส่วนใหญ่ประกอบด้วยเศษอาหาร / ผัก / ผลไม้ ซึ่งมีจำนวนประมาณ ร้อยละ 50 ของน้ำหนักขยะมูลฝอยทั้งหมด รองลงมา คือ พลาสติกและโฟม กระดาษ และอื่น ๆ อย่างไรก็ตาม องค์ประกอบของขยะมูลฝอยในแต่ละแห่งมักมีการเปลี่ยนแปลงตลอดเวลา ทั้งนี้ขึ้นอยู่กับปัจจัยต่าง ๆ ได้แก่ แหล่งกำเนิด ฤดูกาล สภาพเศรษฐูกิ-สังคมและมาตรฐานการครองชีพของประชาชน การเปลี่ยนแปลงทางเทคโนโลยี ทัศนคติและ รูปแบบในการดำรงชีวิต ตลอดจนกฎหมายและข้อบังคับต่าง ๆ

ตารางที่ 2 แสดงองค์ประกอบของขยะมูลฝอย

องค์ประกอบที่เผาไหม้ได้	องค์ประกอบที่เผาไหม้ไม้ได้
1.เศษอาหาร/ผัก/ผลไไม้	1.โลหะ
2.พลาสติกและโฟม	2.แก้ว
3.กระดาษ	3.หินและเซรามิก
4.เศษไม้/ใบไม้/กิ่งไม้	4.กระดูกและเปลือกหอย
5.ผ้าและสิ่งทอ	

(ก) เศษอาหาร/ผัก/ผลไม้

(ค) กระดาษ

(จ) โลหะ
(ช) กระดูกและเปลือกหอย

(ข) พลาสติกและโฟม

(ง) ผ้าและสิ่งทอ

(ฉ) แก้ว

รูปที่ 2 ตัวอย่างองค์ประกอบของขยะมูลฝอย

รูปที่ 3 องค์ประกอบทางกายภาพของขยะมูลฝอยที่เก็บรวบรวมได้ของ จังหวัดกรุงเทพมหานคร
(หน่วย: ร้อยละโดยน้ำหนัก)

รูปที่ 4 องค์ประกอบทางกายภาพของขยะมูลฝอยที่เก็บรวบรวมได้ของ
จังหวัดอุดรธานี
(หน่วย: ร้อยละโดยน้ำหนัก)

รูปที่ 5 องค์ประกอบทางกายภาพของขยะมูลฝอยที่เก็บรวบรวมได้ของ
จังหวัดภูเก็ต
（หน่วย：ร้อยละโดยน้ำหนัก）

3．แนวทางการนำขยะมูลฝอยจากหลุมฝังกลบเก่ามาผลิตพลังงาน

จากปัญหาขยะมูลฝอยในประเทศไทยที่มีปริมาณเพิ่มมากขึ้นทุกปี ซึ่งควรไได้รับการจัดการที่กูกต้องตามหลักสุขาภิบาล เพื่อไม่ก่อให้เกิดผลกระทบด้านสิ่งแวดล้อมและสุขภาพ ทั้งยังสามารถนำขยะมูลฝอยเหล่านี้มาผลิตเป็นพลังงานทดแทนได้ ทำให้กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงานได้เล็งเห็นถึงศักยภาพของขยะมูลฝอยจากหลุมฝังกลบเก่าที่ผ่าน การย่อยสลายไปบางส่วนสามารถนำมาผลิตเป็นพลังงานทดแทนได้

ดังนั้นกรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงานจึงได้ทำการศึกษาศักยภาพการผลิตพลังงานจากขยะมูลฝอย จากหลุมฝังกลบเก่าโดยแนวทางการจัดการและผลิตพลังงานจากขยะมูลฝอยมี 3 รูปแบบ［5］ได้แก่

1．การนำขยะจากหลุมฝังกลบมาผลิตเชื้อเพลิงขยะ
เทคโนโลยีผลิตเชื้อเพลิงขยะ（Refuse Derived Fuel：RDF）นำขยะมูลฝอยมาผ่านกระบวนการคัดแยกวัสดุ ที่เผาไหม้ได้ออกเป็น การฉีกหรือตัดขยะมูลฝอยออกเป็นชิ้นเล็ก ๆ ผ่าน กระบวนการจัดการ เพื่อปรับปรุงคุณสมบัติทาง กายภาพและทางเคมี ทำให้เป็นเชื้อเพลิงขยะและสามารถนำไปใช้ในการผลิตพลังงานได้ ขยะที่ผ่านกระบวนการเหล่านี้จะได้ ค่าความร้อนสูง มีคุณสมบัติเป็นเชื้อเพลิงที่ดีกว่าการนำขยะมูลฝอยที่เก็บรวบรวมมาใช้โดยตรง เนื่องจากมีองค์ประกอบ ทางเคมีและกายภาพสม่ำเสมอกว่า

กระบวนการผลิตเชื้อเพลิงขยะประกอบด้วย ส่วนคัดแยกขยะอย่างหยาบโดยการนำขยะมูลฝอยจากหลุมฝังกลบเก่า เฉลี่ย 100 ตัน สามารถนำกลับไปผลิตเชื้อเพลิงขยะได้ 38.5 ตัน และคัดแยกโลหะ โดยขั้นตอนนี้สามารถดำเนินการได้ ที่หลุมฝังกลบ เพื่อคัดแยกเฉพาะเชื้อเพลิงขยะที่สามารถเข้าระบบได้ก่อนจะขนส่งมาที่อาคารผลิต ซึ่งภายในอาคารผลิต จะมีกระบวนการคัดแยกขยะอย่างละเอียดอีกครั้ง เพื่อแยกเศษดิน เศษหิน และอื่น ๆ ที่อาจติดมากับเศษพลาสติก ยาง หรือหนัง เป็นต้น จากนั้นจึงทำการนำเชื้อเพลิงขยะส่งเข้าเครื่องตัด เครื่องผสมขยะ เครื่องอบแห้ง และเครื่องอัดแท่ง

เชื้อเพลิง โดยเชื้อเพลิงขยะที่ใด้ะะเป็น Densified RDF ซึ่งจะส่งเข้าโรงเก็บเชื้อเพลิงขยะก้อนที่จะนำไปขายที่โรงงูนซีเมนต์ ในพื้นที่ใกล้เคียงต่อไป
2. การนำขยะมูลฝอยเก่าจากหลุมยังกลบมาผลิเเป็นก็าซเชื้อเพลิง

เทคโนโนยีกกรผลิตก๊าชเชื้อเพลิงจากขยะชุมชน (Municipal Solid Waste Gasification: MSW Gasification) หรือขยะเชื้อเพลิง (RDF) ที่ได้จกกหลุมฝังกลบเก่า เป็นกระบวนการทำให้ขยะมูลฝอยเปลี่ยนสภาพเป็นก๊าชโดยการทำ ปฏิกิริยาสันดดปปแบบไม่สมบูรณ์ (Partial Combustion) โดยสาริินทรียใในขยะมูลฝอยจะทำปฏิกิริยากับอากาศนรือออกชิเจน ในปริมาณจำกัด ทำให้เกิดก๊าชคาร์บอนมอนออกใซด์ ไฮโดรเจน และก๊าชเชื้อเพลิง ซึ่งเป็นก๊าชที่มีค่าความร้อนสูง สามารถนำไปปช้เป็นเชื้อเพลิงในการผลิตไฟฟ้าหรือให้ความร้อนโดยตรงต่อไป
3. การนำก๊าพชีวภภาพจากหลุมมังกลบมาผลิพพลังงาน

การนำขยะมาฝังกลบที่หลุบฝังกลบขยะนั้นพบว่าภายในหลุมฝังกลบขยะจะมีกีาชชีวภาพเกิคขึ้น ได้แก่ กัาซมีเทน ก๊าซคาร์บอนไดออกไซด์ และก๊าซอื่น ๆ ซึ่งเกิดขึ้นภายในหลุบฝังกลบขยะที่ถูกปิดดับบด้วยชั้นของขยะตามความลึก ของหลุมฝังกลบ นอกจากนี้ก้าซที่เกิดขึ้นก็สามารถระบายออกตามช่องว่างต่าง ๆ แต่มีปริมาณไม่มากนัก คือประมาณ ร้อยละ $3-4$ ซึ่งการจะนำกําซมาใช้ปรระโยชน์นั้นจึงต้องมีการักงท่อลงไปไนหลุมสังกลบและอาศัยแรงดูดจาก Blower (Active Venting) ในการรวบรวมกัาชที่เกิจขึ้นทั้งหมดในหลุมและเชื่อมต่อท่อรวบรวมก๊าชที่ทริเวณปลายท่อเข้าด้วยกัน ผ่านระบบกำจัคความชื้น ก๊าซคาร์บอนไดออกไซด์ และกัาซไฮโโดรจเนซัลไฟด์ ก้อนจะส่งไปะังเครื่องผลิิกระแสไฟฟ้า

4. การนำขยะจากหลุมฝังกลบเก่ามาผลิตน้ำมันไพโรไดซิส

เทคโนโลยีการแปรรูปขยะมูลฝอยจากหลุมฝังกลบเป็นน้ำมันเชื้อเพลิงเป็นการเปลี่ยนขยะมูลฝอยประเภท พลาสติกให้เป็นน้ำมัน โดยวิธีการเผาในเตแบบไพโรไดซิส (Pyrolysis) ด้วยการควบคุมอุณหภูมิเละความดัน และใช้ ตัวเร่งไฏิกิกิยา (Catalyst) ที่เหมาะสมทำให้เกิดการสลายตัวของโครงสร้างพลาสติก (Depolymerization) [4] ได้ผลิตภัณฑ์คือเชื้อเพลิงเหลว สามารถนำไปผ่านกระบวนการกลั่นเพื่อใช้เป็นเชื้อเพลิงเหลวในเชิงพาณิชช์ได้ กระบวนการผลินน้ำมัน ไพโร้ไซิส (Pyrolysis Process) ประกอบด้วย ส่วนคัดแยกขยะอย่างหยาบโดยทำการ่อนขยะมูลออยจากหลุมฝังกลบ เก่าฉลี่ย 100 ตัน สามารถนำกลับไปผลิตน้ำมันไพโรไไลซิสได้ 11.9 ตัน ซึ่งสามารถผลิคน้ำมันเชื้อเพลิงได้ประมาณ 8,000 ลิตร โดยส่วนนี้ด้าเนินการที่หลุมฝังกลบขยะ เพื่อคัดแยกส่วนของดินและขยะอื่น ๆ ออกจากกัน ก่อนจะขนส่งขยะที่แยก แล้วมาที่อาคารผลิต ภายในอาคารผลิตะะมีกระบวนการคัดแยกขยะอย่างละเอียดเพื่อแยกเฉพาะพลาสติกที่สามารถใช้งาน ได้ จกกนั้นจะทำการนำพลาสติกส่งเข้าเคคื่องล้างทำความสะอาดพลาสติก แยกเศษดินออก นำมาบบ จากนั้นขยะพลาสติก จะถูกส่งเข้าคคื่องอัดขยะ ก่อนส่งเข้าระบบผลิตน้ำมันไพโรไดซิส ผลผลิตที่ได้จออยู่ในรูปน้ำมันดิบ (Crude oil) โดยเก็บ ไว้านถังน้ำมัน ก้อนนำไปขายที่โรงกลั่นน้ำมันในพื้นที่ใกล้เคียง

จกกผลการึึกษไได้ข้อสรุปว่า การนำก๊าชชี่วกาพหรือก๊าซเชื้อเพลิงกลับมาใช้ประโยชน์โดยการผลิตกระแสไฟฟ้า นั้น จะมีความคุ้บค้าในเชิงศรรษฐุศาสตร์และการเงินสำหรับผู้ลงทุนเนื่องจากมีอีตราผลตอบแทนสูง และระยะเวลาคืนทุน ต่ำ ส่วนในด้านการนำขยะมาผลิตเชื้อเพลิงขยะ และน้้ำมันไพโรไดซิส ยังงงไม่มุ่มค่าในเชิงศรษฐศาสตร์และการเงินสำหรับ ผู้ลงทุน อีกทั้งััจจุบันยัไไม่มีการใช้งนอย่างจริงจังในเชิงพาณิชย์ [5] ดังนั้น ภารรัธึจึงควรพิจารณาให้การสนับสนุนเงิน อุดหนุนก่อสร้างระบบการกำจัดขยะมูลฝอยที่ให้พลังงนทดแทน ลดภายีการนำเข้าเครื่องจักร และเพิ่มส่วนเพิ่มในการับ ซื้อไฟฟ้า (Adder) และระยะเวลาในการสนับสนุนให้มากขึ้น เพื่อสร้าแเรงจูงใจให้แก่นักลงทุนเข้าร่วมลงทุน ตลอดจนแก้ไข กฎหมายที่ย"งไม่เอื้อต่อการใช้ประโยชน์จากพลังงานขยะมูลฝอย เพื่อให้ประเทศไทยสามารถนำขยะมูลฝอยมาใช้ ประโยชน์ได้อย่างคุ้มค่ามากที่สุดเพื่อลดการเกิดปัญหหสิ่งแวดล้อมที่จะเกิคขึ้นตามมาในอนาคต

4. ผลกระทบด้านสิ่งแวดล้อมและสุขภาพ

ในอดีตการกำจัดขยะมูลฝอยที่เกิดจากกิจกรรมต่าง ๆ ของมนุษย์ยังไม่ใช่ปัญหาสำคัญ เนื่องจากประชากร ในอดีตยังมีไม่มากและอาศัยอยู่กันอย่างไม่หนาแน่น ทำให้มีปริมาณขยะมูลฝอยเกิดขึ้นน้อย ประกอบกับที่ดินที่จะใช้เป็น ที่ฝังกลบของขยะมูลฝอยก็ยังมีเป็นปริมาณมากและราคาไม่แพง แต่ในปัจจุบันปัญหาจากการกำจัดขยะมูลฝอยเริ่มเกิดขึ้น เมื่อมีประชากรเพิ่มมากขึ้นก็ทำให้มีปริมาณขยะมูลฝอยเพิ่มขึ้นตามไปด้วย และเมื่อไม่มีการจัดการอย่างถูกวิธีก็จะส่งผล กระทบต่อสิ่งแวดล้อมและสุขภาพอนามัยของประชาชน ดังต่อไปนี้

1) แหล่งเพาะพันธุ์ของแมลงและพาหะำาโรค

เนื่องจากเชื้อจุลินทรียีที่ปนเปื้อนมากับขยะมูลฝอยมีการเจริญเติบโตเพิ่มจำนวนมากขึ้นได้ เพราะขยะมูลฝอย มีความชื้นและสารอินทรีย์ก็เป็นแหล่งอาหารให้กับพวกจุลินทรีย์ต่าง ๆ นอกจากนี้ขยะมูลฝอยส่วนที่เป็นสารอินทรีย์หาก ทิ้งค้างไว้นาน ๆ จะเกิดการเน่าเปื่อยทำให้กลายเป็นแหล่งเพาะพันธุ์ของแมลงวัน [6] รวมทั้งเป็นที่อยู่อาศัยของหนูและ แมลงสาบ เพราะกองขยะมูลฝอยเต็มไปด้วยอาหารและเป็นที่หลบซ่อนอย่างดี ดังนั้นขยะมูลฝอยที่ขาดการเก็บรวบรวม และการกำจัดด้วยวิธีที่ถูกต้อง จึงทำให้เกิดเป็นแหล่งที่อยู่อาศัยและเป็นแหล่งเพาะพันธุ์เชื้อโรคที่สำคัญ ได้แก่ แมลงวัน หนู แมลงสาบ เป็นต้น ซึ่งสัตว์เหล่านี้ล้วนเป็นพาหะนำโรคมาสู่คนได้
2) ก่อให้เกิดความรำคาญ

ขยะมูลฝอยที่เก็บรวบรวมได้ไม่หมดจะเกิดการตกค้าง ทำให้เกิดกลิ่นเหม็นรบกวนกระจายอยู่ทั่วไปในชุมชน นอกจากนี้ฝุ้นละอองที่เกิดขึ้นขณะเก็บรวบรวม หรือขนถ่ายขยะมูลฝอยรวมจะเกิดการฟุ้งกระจายตรงบริเวณสถานีกำจัด ก่อให้เกิดปัญหาความรำคาญที่มักจะได้รับการร้องเรียนจากประชาชนในชุมชนอยู่เสมอ
3) ก่อให้เกิดมลพิษต่อสิ่งแวดล้อม

ขยะมูลฝอยเป็นสาเหตุสำคัญอย่างหนึ่งที่ทำให้เกิดมลพิษทางน้ำ มลพิษทางดิน และมลพิษทางอากาศได้ดังนี้ [6]

- มลพิษทางน้ำ เกิดจากการเทกองขยะมูลฝอยทิ้งไว้บนพื้น เมื่อมีฝนตกลงมา น้ำฝนจะไหลชะความสกปรก เชื้อโรค รวมถึงสารพิษจากขยะมูลฝอยไหลลงสู่แหล่งน้ำทำให้แหล่งน้ำเกิดการเน่าเสียได้
- มลพิษทางดิน เกิดจากการทิ้งหรือฝังกลบอย่างไม่ถูกสุขลักษณะของขยะมูลฝอยที่มีสารพิษเจือปน เช่น ถ่านไฟฉาย แบตเตอรี่ หลอดฟลูออเรสเซนต์ ซึ่งมีโลหะหนักชนิดต่าง ๆ ปะปนอยู่ ได้แก่ ปรอท แคดเมียม ตะกั่ว เป็นต้น ซึ่งเมื่อฝนตกลงมาโลหะหนักเหล่านี้จะไหลซึมลงไปในดินพร้อมกับน้ำฝน ก่อให้เกิดการปนเปื้อนของสารพิษในดินได้
- มลพิษทางอากาศ เกิดจากการกำจัดขยะมูลฝอยโดยวิธีการเผากลางแจ้ง ก่อให้เกิดควันและสารมลพิษ ทางอากาศ ทำให้คุณภาพอากาศเสื่อมโทรม

4) ผลกระทบต่อสุขภาพ

หากชุมชนมีการกำจัดขยะมูลฝอยที่ไม่ถูกหลักสุขาภิบาล ก็อาจเกิดความเสี่ยงที่จะทำให้ประชาชนป่วยเป็นโรคต่างๆ ได้โดยง่าย โดยเฉพาะโรคทางเดินอาหารที่เกิดจากเชื้อแบคที่เรียและพยาธิชนิดต่าง ๆ
5) การสูญูเสียทางด้านเศรษฐูกจจ

เป็นผลสืบเนื่องจากปัญหาการเก็บขนขยะมูลฝอยไม่หมด มีขยะมูลฝอยตกค้างทำให้เกิดความสกปรก และทำให้ เสียทัศนียภาพที่ดี เกิดความไม่เป็นระเบียบเรียบร้อย ไม่ดึงดูดนักท่องเที่ยวให้เข้ามาแวะชม ทำให้รายได้จากการท่องเที่ยว ลดลง โดยเฉพาะอย่างยิ่งกับเมืองท่องเที่ยวต่าง ๆ

นโยบายการกำจัดขยะมูลฝอยของประเทศไทยต้องอาศัยความร่วมมือจากทุกภาคส่วนและมีการบูรณาการ ทำงานร่วมกันโดยมีกรมควบคุมมลพิษ กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อมเป็นหน่วยงานกลางทำหน้าที่ ประสานการทำงานเพื่อสนับสนุนเชิงนโยบายและร่วมดำเนินการตามแผนการจัดการมลพิษกับหน่วยงานกลางอื่นที่เกี่ยวข้อง เพื่อให้บรรลุเป้าหมายที่กำหนดไว้

1) สนับสนุนและส่งเสริมการดำเนินกิจกรรมด้านการลด คัดแยก และนำขยะมูลฝอยกลับมาใช้ประโยชน์ (3Rs) ในระดับชุมชนมากขึ้น ผลักดันการออกกฎหมายเพื่อส่งเสริมการลดและนำของเสียกลับมาใช้ประโยชน์ของ ทุกภาคส่วนและการแก้ไขพระราชบัญญัติการสาธารณสุข พ.ศ. 2535 เพื่อให้ประชาชนมีการคัดแยกขยะมูลฝอย [6] ซึ่งนโยบายดังกล่าวมีแนวคิดเดียวกับของประเทศญี่ปุ่นที่มีการส่งเสริมนโยบาย 3 Rs และมีการสนับสนุนผู้ประกอบการ สร้างนวัตกรรมที่มีประโยชน์ต่อการส่งเสริม 3Rs เพื่อต่อยอดไปสู่โครงการ Eco Town Project [7]

สำหรับผลของการขับเคลื่อนยุทธศาสตร์ 3 Rs ที่ต้องการให้เกิดการคัดแยกและนำขยะกลับไปใช้ประโยชน์ หรือ รีไซเคิล ข้อมูล ณ ปี 2556 มีทั้งหมด 5.1 ล้านตัน (ร้อยละ 19) ซึ่งยังน้อยมาก อย่างไรก็ตาม การเน้นการลดปริมาณ การเกิดขยะมูลฝอยก็เป็นประเด็นสำคัญ ซึ่งหากพิจารณาจากอัตราการผลิตขยะมูลฝอยต่อคนต่อวันในช่วง $5-10$ ปี ที่ผ่านมา ถือว่ายังไม่ประสบความสำเร็จ เพราะอัตราการผลิตขยะมูลฝอยมีแนวโน้มเพิ่มขึ้นจาก 1.03 กิโลกรัมต่อคน ต่อวัน ในปี พ.ศ. 2551 เป็น 1.15 กิโลกรัมต่อคนต่อวันในปัจจุบัน ของเสียอันตรายเป็นอีกหนึ่งปัญหาสิ่งแวดล้อม ที่น่าห่วงใย เพราะมีความเป็นอันตรายต่อสุขภาพและเมื่อปนเปื้อนในสิ่งแวดล้อม จากการประมาณการเกิดขึ้นทั่วประเทศ พบว่า มีของเสียอันตรายเกิดขึ้น 2.65 ล้านตันต่อปี โดยร้อยละ 77 หรือ 2.04 ล้านตัน เป็นของเสียจากภาคอุตสาหกรรม และร้อยละ 23 หรือ 0.61 ล้านตัน มาจากชุมชน [8]
2) สนับสนุนให้องค์กรปกครองส่วนท้องถิ่นมีระบบการจัดการขยะมูลฝอยแบบผสมผสานและเพิ่มสมรรถนะ ในการบริหารจัดการขยะมูลฝอยโดยเฉพาะองค์กรปกครองส่วนท้องถิ่นระดับเทศบาลนครและเทศบาลเมือง โดยเริ่มตั้งแต่ การลด คัดแยก และนำขยะมูลฝอยกลับมาใช้ประโยชน์ใหม่ การคัดแยกและเก็บรวบรวมของเสียอันตรายชุมชนออกจาก ขยะมูลฝอยทั่วไป การเพิ่มประสิทธิภาพในการเก็บรวบรวมขยะมูลฝอย การกำจัดขยะมูลฝอยในลักษณะรวมศูนย์โดยพิจารณา ตามศักยภาพและความสมัครใจขององค์กรปกครองส่วนท้องถิ่น และเพิ่มรายได้จากการจัดการขยะมูลฝอยทำให้ขยะมูลฝอย ชุมชนที่เกิดขึ้นได้รับการจัดการอย่างถูกหลักสุขาภิบาลเพิ่มขึ้น
3) สนับสนุนนโยบายการแปรรูปขยะมูลฝอยเป็นพลังงาน (Waste to Energy) โดยจัดตั้งคณะทำงานภายใต้ คณะอนุกรรมการประสานกระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อมและกระทรวงพลังงาน มีการจัดทำทำเนียบการจัดการ ขยะมูลฝอยเป็นพลังงาน แผนการจัดการขยะมูลฝอยเป็นพลังงานและโครงการนำร่อง การจัดการขยะมูลฝอยเป็นพลังงาน ทดแทน
4) ให้องค์กรปกครองส่วนท้องถิ่นมีการคัดแยกและเก็บรวบรวมของเสียอันตรายจากชุมชนโดยดำเนินการตาม แนวทางและวิธีการปฏิบัติในการจัดการของเสียอันตรายจากชุมชนที่กำหนดและสร้างหุ้นส่วนความร่วมมือในการจัดการ ของเสียอันตรายจากชุมชนกับบริษัทเอกชน เพื่อแบ่งเบาภาระค่าใช้จ่ายขององค์กรปกครองส่วนท้องถิ่น เช่น เร่งรัดการออก กฎกระทรวงสาธารณสุขในการกำหนดค่านิยาม หลักเกณฑ์วิธีการเก็บขน ขนส่ง และกำจัดขยะอันตรายชุมชนเพื่อให้ องค์กรปกครองส่วนท้องถิ่นใช้เป็นแนวทางในการดำเนินงานการรับหลอดฟลูออเรสเซนต์ชนิดตรงและแบตเตอรี่โทรศัพท์ เคลื่อนที่จากองค์กรปกครองส่วนท้องถิ่นไปรีเซเคิล เป็นต้น
5) ผลักดันการออกกฎหมายการจัดการซากผลิตภัณฑ์เครื่องใช้ไฟฟ้าและอิเล็กทรอนิกส์โดยใช้มาตรการทาง การคลัง เผยแพร่ประชาสัมพันธ์เกี่ยวกับผลกระทบและการจัดการซากผลิตภัณฑ์ฯ ให้กว้างขวางมากขึ้น และพัฒนาปรับ ปรุงระบบฐานข้อมูลผลิตภัณฑ์และซากผลิตภัณฑ์เครื่องใช้ไฟฟ้าและอิเล็กทรอนิกส์
6) ส่งเสริมให้มีการรวมกลุ่มขององค์กรปกครองส่วนท้องถิ่นในการจัดการขยะมูลฝอยชุมชนและขยะมูลฝอย ติดเชื้อแบบศูนย์รวม เช่น จัดทำแผนแม่บทในการจัดการมูลฝอยชุมชน ให้ภาคเอกชนเข้ามาร่วมลงทุนในการบริหารจัดการ ใช้เทคโนโลยีที่เหมาะสม เพื่อป้องกันมลพิษและดำเนินการระบบจัดการขยะมูลฝอย
7) พัฒนาระบบเอกสารกำกับการขนส่งของเสียอันตราย (Manifest System) สร้างระบบกลไกและมาตรฐาน การตรวจสอบระบบการขนส่งกากของเสียอันตรายตั้งแต่ต้นทางที่เป็นแหล่งกำเนิดมลพิษจนถึงปลายทางที่เป็นสถานที่ กำจัด รวมทั้งมีระบบการติดตามตรวจสอบ เช่น การใช้ระบบติดตามตำแหน่งของรถยนต์ผ่านดาวเทียม (GPS-Tracking) ให้แสดงผลควบคู่กับระบบเอกสารกำกับการขนส่งของเสียอันตรายแบบอิเล็กทรอนิกส์ (e-Manifest System) โดยเริ่ม ทดสอบกับรถยนต์ขนส่งกากของเสียอันตรายจากอุตสาหกรรม ซึ่งวิธีการนี้ช่วยแก้ไขปัญหาการลักลอบทิ้งกากของเสียสู่ ชุมชนได้ พร้อมทั้งใด้เพิ่มบทลงโทษทางกฎหมายกับผู้กระทำผิดด้วย
8) ดำเนินการตามอนุสัญญาว่าด้วยการคุ้มครองสุขภาพและสิ่งแวดล้อมด้านสารมลพิษที่ประเทศไทยได้ให้สัตยาบัน ไว้ ได้แก่ อนุสัญญาบาเซล (Basel Convention) ว่าด้วยการควบคุมการเคลื่อนย้ายข้ามแดนของของเสียและการกำจัด อนุสัญญาสต๊อกโซล์ม (Stockholm Convention) ว่าด้วยสารพิษที่ตกค้างยาวนาน (Persistance Organic Pollutants หรือ POPs) อนุสัญญารอตเตอร์ดัม (Rotterdam Convention) ว่าด้วยกระบวนการแจ้งข้อมูลสารเคมีล่วงหน้าสำหรับ สารเคมีอันตรายและสารเคมีป้องกันกำจัดศัตรูพืชและสัตว์บางชนิดในการค้าระหว่างประเทศ อนุสัญญาที่อยู่ในระหว่าง การเจรจาในเวทีโลก เช่น อนุสัญญาว่าด้วยสารปรอทเป็นต้น

6. ปัญหาและอุปสรรคในการกำจัดขยะมูลฝอยในประเทศไทย

ประสิทธิภาพการกำจัดและควบคุมขยะมูลฝอยจะดีหรือไม่ขึ้นอยู่กับความสามารถในการจัดเก็บรวบรวมและ กำจัดขยะมูลฝอยที่เกิดขึ้น การให้บริการเก็บขนขยะมูลฝอยโดยทั่วไปยังไม่มีประสิทธิภาพและทั่วถึง ทำให้มีขยะมูลฝอย ตกค้างเป็นจำนวนมาก นอกจากนี้การกำจัดขยะมูลฝอยยังไม่ถูกสุขลักษณะำให้เกิดการปนเปื้อนในสิ่งแวดล้อม และ เสี่ยงต่อสุขภาพอนามัยของประชาชน ดังนั้นสรุปปัญหาและอุปสรรคในการกำจัดขยะมูลฝอยไว้ดังนี้ [6]

1) มีข้อจำกัดในการจัดสรรงบประมาณสำหรับก่อสร้างระบบกำจัดขยะมูลฝอยอย่างถูกหลักวิชาการและการจัดหา เครื่องจักรอุปกรณ์ รวมทั้งการก่อสร้างศูนย์กำจัดขยะมูลฝอยแบบครบวงจรได้รับการต่อต้านจากประชาชนถึงแม้จะมี การศึกษาผลกระทบสิ่งแวดล้อม (EIA) แล้วก็ตาม
2) องค์กรปกครองส่วนท้องถิ่นในระดับเทศบาลขนาดใหญ่มีขีดความสามารถในการจัดการขยะมูลฝอยเพิ่มขึ้น แต่องค์กรปกครองส่วนท้องถิ่นขนาดเล็กยังขาดความพร้อมในการบริหารจัดการขยะมูลฝอย นอกจากนี้ยังมีข้อจำกัด ในการรวมกลุ่มพื้นที่เพื่อจัดการขยะมูลฝอยแบบรวมศูนย์ โดยมีองค์กรปกครองส่วนท้องถิ่นหลายแห่งไม่สมัครใจเข้าร่วม การรวมกลุ่มพื้นที่ตามหลักเกณฑ์ที่กำหนด เนื่องจากไม่สอดรับกับวัฒนธรรมท้องถิ่นในการนำขยะมูลฝอยจากที่อื่นมาทิ้ง รวมกัน และการกำหนดค่าธรรมเนียมในการเก็บขนขยะมูลฝอยขององค์กรปกครองส่วนท้องถิ่นยังไม่สอดคล้องกับค่าใช้จ่าย ในการดำเนินการ ทำให้ไม่สามารถดำเนินการได้ครอบคลุมทั้งพื้นที่ รวมทั้งยังมีการต่อต้านจากประชาชน
3) นโยบายการแปรููปขยะมูลฝอยเป็นพลังงาน (Waste to Energy) ยังไม่เกิดผลในทางปฏิบัติอย่างเป็น รูปธรรมและมีข้อจำกัดในการดำเนินการ
4) สถานที่กำจัดของเสียอันตรายจากชุมชนยังมีไม่เพียงพอและมีของเสียอันตรายบางประเภทถูกนำไปคัดแยก รีไซเคิลอย่างไม่ถูกต้อง ขาดมาตรการในการตรวจติดตามเล้าระวังการจัดการวัสดุเหลือใช้ที่ย่อยสลายยากจากโรงงานที่ไม้ได้ กำจัดอย่างถูกวิธี นอกจากนี้ สถานที่กำจัดของเสียอันตรายและกากอุตสาหกรรมส่วนใหญ่ตั้งอยู่ในภาคตะวันออกและ ภาคกลางทำให้ในการขนส่งของเสียอันตรายจากชุมชนจากภูมิภาคอื่น ๆ ไปยังสถานที่กำจัดของเสียอันตราย มีต้นทุนสูง และเกิดปัญหาการร้องเรียนจากการดำเนินงานของสถานที่กำจัดของเสียอันตราย
5) การรณรงค์และประชาสัมพันธ์ยังขาดความต่อเนื่อง ทำให้การสร้างความตระหนักและการมีส่วนร่วมใน การจัดการขยะมูลฝอย ณ แหล่งกำเนิด ยังไม่ครอบคลุมทุกภาคส่วนทั้งประชาชน ชุมชน และผู้ประกอบการ ประชาชน ส่วนใหญ่ยังขาดจิตสำนึกในการจัดการขยะมูลฝอยที่ถูกต้อง

7. เอกสรรอ้างอิง

[1] หมายเหตุมลพิษ. (2556). กรมควบคุมมลพิษ. กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม ปีที่ 9 ฉบับที่ 13 เดือนธันวาคม $2555-$ มกราคม.
[2] วารสาร Green Research. (2552). การจัดการขยะล้นเมือง. ปีที่ 6 ฉบับที่ 13 ประจำเดือนกันยายน พ.ศ. 2552. ศูนย์วิจัยและฝึกอบรมด้านสิ่งแวดล้อม
[3] ร่างรายงานสถานการณ์มลพิษของประเทศ่ไทย ปี 2555 . กรมควบคุมมลพิษ. กระทรวงทรัพยากรธรรมชาติและ สิ่งแวดล้อม.
[4] Jefferey Morris. Recycling versus incineration:an energy conservation analysis. Journal of Hazardous Materials. 1996. (227-2293)
[5] โครงการศึกษาศักยภาพขยะจากหลุมฝังกลบเก่า โครงการศึกษาศักยภาพขยะจากหลุมฝังกลบเก่า และแนวทางการใช้ ประโยชน์พลังงานขยะ. (2554). กรมพลังงานทดแทนและอนุรักษ์พลังงาน. กระทรวงพลังงาน.
[6] ดาวรุ่ง สังข์ทอง. การจัดการขยะมูลฝอย. (2557). http://elearning.su.ac.th/elearninguploads/libs/document/ chap\%209\%20solid\%20waste_4411.pdf
[7] The Basic Act for Establishing a Sound Material-Cycle Society (Act No. 110 of 2000). http://www.env.go.jp/en/laws/recycle/12.pdf.
[8] สถานการณ์มลพิษสิ่งแวดล้อม. (2556). กรมควบคุมมลพิษ

