สาผร่าย : ॥หล่งแลัจงานยั่งยีน॥เห่งอนาคต

สถาบันวิจัยสภาวะแวดล้อม

พลังงานฟอสซิลกับปญหาโลกร้อน

การใช้เชื้อเพลิงฟอสซิลในภาคคมนาคมและขนส่ง การผลิตกระแสไฟฟ้า และภาคอุตสาหกรรม ได้ก่อให้เกิดปัญหา สิ่งแวดล้อมจากการปลดปล่อยสารพิษทางอากาศ เช่น ก๊าซซซัลเฟอร์ไดออกไซด์ $\left(\mathrm{SO}_{2}\right)$ และก๊าซไไนโตรเจนออกไซด์ $\left(\mathrm{NO}_{\mathrm{x}}\right)$ เป็นต้น แต่ปัญหาดังกล่าวยังไม่ก่อให้เกิดความตื่นตัวและตระหนักถึงผลเสียที่เกิดจากการใช้พลังงานฟอสซิลต่อประชากรโลก จนกระทั่งการก่อตัวของปัญหาโลกร้อนอันเป็นผลมาจากก๊าซเรือนกระจก (Greenhouse gas) และหนึ่งในก๊าซเรือนกระจก ที่ได้รับความสนใจอย่างกว้างขวาง คือ ก๊าซคาร์บอนไดออกไซด์ (CO) ที่เกิดจากการเผาไหม้เชื้อเพลิงฟอสซิล และปัญหา อีกประการหนึ่งคือ ปัญหาด้านความมั่นคงทางพลังงาน เนื่องจากเชื้อเพลิงฟอสซิลเป็นเชื้อเพลิงที่เกิดขึ้นตามธรรมชาติ โดยใช้ระยะเวลานับล้านปีไม่สามารถสร้างขึ้นหรือเกิดขึ้นมาใหม่เพื่อทดแทนปริมาณที่หมดไปอย่างรวดเร็วจากการใช้ ในช่วงเวลาสองร้อยปีที่ผ่านมาจนถึงปัจจุบัน ดังนั้น ปัญหาความยั่งยืนของแหล่งพลังงานโลกจึงเป็นปัญหาสำคัญ อีกประการหนึ่ง

ปัญหาการเปลี่ยนแปลงสภาพภูมิอากาศส่วนหนึ่งมีผลจากการเพิ่มขึ้นของก๊าซคาร์บอนไดออกไซด์ในบรรยากาศโลก เนื่องจากการใช้พลังงานฟอสซิลและการหมดไปในลักษณะที่ไม่สามารถทดแทนได้ของเชื้อเพลิงฟอสซิลนี้ จึงนำไปสู่การหา แหล่งพลังงานทางเลือกเพื่อทดแทนเชื้อเพลิงฟอสซิล โดยคำนึงถึงแหล่งพลังงานที่มีความยั่งยืน ไม่ก่อให้เกิดและหรือ ช่วยลดการปลดปล่อยคาร์บอน รวมทั้งเป็นพลังงานสะอาด ตัวอย่งงพลังงานทางเลือกในลักษณะดังกล่าว เช่น พลังงานแสงอาทิตย์ พลังงานลม พลังงานความร้อนใต้พิภพ และพลังงานชีวมวล เป็นต้น อย่างไรก็ตาม พลังงานทางเลือกต่าง ๆ ไม่สามารถตอบ โจทย์ในการตอบสนองต่อความต้องการในเชิงปริมาณ และประการสำคัญต้องเป็นแหล่งพลังงานสำหรับภาคคมนาคมและ ขนส่ง ยกเว้นพลังงานชีวมวลที่อยู่ในรูปของไบโอดีเซล (Biodiesel) และเอทานอล (Ethanol) ซึ่งเป็นหนึ่งในพลังงาน ทางเลือกที่อาจสามารถตอบโจทย์ดังกล่าว

การผลิตไบโอดีเซลและเอทานอลส่วนใหญ่ผลิตจากพืชที่ใช้เป็นอาหาร เช่น ข้าวโพด ถั่วลิสง ปาล์ม อ้อย (หรือกากน้ำตาล) และมันสำปะหลัง เป็นต้น ทำให้เกิดข้อถกเถียงต่าง ๆ ถึงปัญหาต่าง ๆ ที่ตามมา และที่สำคัญคือ ความมั่นคงทางอาหาร ทั้งด้านราคาและความเพียงพอ ปัญหาความต้องการใช้ประโยชน์ที่ดินที่เพิ่มสูงขึ้น ท้ายที่สุดนำไปสู่ การสร้างแรงกดดันต่อการคุกคามพื้นที่ป่าไม้และพื้นที่ธรรมชาติเพื่อตอบสนองความมั่นคงทางพลังงานและอาหาร

โลกกับการใช้พลังงาน

พลังงานหลักที่ใช้ในช่วงก่อนการปฏิวัติอุตสาหกรรมมาจากเชื้อเพลิงชีวภาพ หรือ Biofuel ซึ่งในสมัยนั้นได้แก่ ฟืนและถ่าน แต่หลังจากยุคอุตสาหกรรมเป็นต้นมา ความต้องการใช้พลังงานได้เพิ่มสูงขึ้นทำให้ถ่านหินได้เริ่มมีบทบาทมากขึ้น และยังใช้กันอยู่จนถึงปัจจุบัน ต่อมาในช่วงต้นของคริสต์ศตวรรษที่ 19 น้ำมันและก๊าซธรรมชาติได้เริ่มถูกนำมาใช้ จนถึง ช่วงกลางคริสต์ศตวรรษที่ 19 การใช้พลังงานของโลกได้เพิ่มสูงขึ้นอย่างรวดเร็วจนถึงปัจจุบัน โดยเชื้อเพลิงพื้นฐานหรือ เชื้อเพลิงปฐูมภูมิ (Primary Energy) ที่ถูกใช้เป็นหลักคือ เชื้อเพลิงฟอสซิล และเริ่มมีการใช้พลังงานจากน้ำ และ พลังงานนิวเคลียร์ในช่วงเวลาต่อมา แต่มีสัดส่วนที่น้อยมากเมื่อเทียบกับพลังงานฟอสซิล ${ }^{(2)}$ (ดังแสดงในรูปที่ 1)

องค์การสหประชาชาติ (United Nations, UN) ${ }^{(3)}$ ได้ประมาณการว่าในปี ค.ศ. 1950 (พ.ศ. 2493) โลกมี ประชากร 2.5 พันล้านคน อีก 50 ปี ต่อมาหรือในปี ค.ศ. 2000 (พ.ศ. 2543) ประชากรโลกเพิ่มขึ้นเป็น 6.1 พันล้านคน และ ทำนายว่าในอีก 50 ปีข้างหน้าหรือในปี ค.ศ. 2050 (พ.ศ. 2593) ประชากรโลกอาจสูงถึง 8.9 พันล้านคน จากข้อมูลประชากร โลกตามกราฟที่แสดงในรูปที่ $2^{(2)}$ เห็นได้ชัดว่าประชากรโลกได้เริ่มมีจำนวนสูงขึ้นอย่างชัดเจนในช่วงก่อนปี ค.ศ. 1900 (ปี พ.ศ. 2443) และเพิ่มขึ้นอย่างก้าวกระโดดตั้งแต่ปี ค.ศ. 1950 (พ.ศ. 2493) เป็นต้นมาถึงปัจจุบัน ธนาคารโลก) ได้ คาดการว่าในปี ค.ศ 2015 (พ.ศ. 2558) ประชากรโลกจะมีมากกว่า 7 พันล้านคน และยังได้ระบุไว้อีกว่า การเพิ่มขึ้นอย่าง รวดเร็วของประชากรส่งผลต่อความสามารถในการบริหารจัดการทรัพยากรธรรมชาติอย่างยั่งยืนของประเทศต่าง ๆ

รูปที่ 1 ปริมาณการใช้พลังงานของโลกระหว่าง ค.ศ. 1820 ถึง 2010 (ปี พ.ศ. 2363 ถึง พ.ศ. 2553) ${ }^{(2)}$

รูปที่ 2 ประชากรโลกระหว่าง ค.ศ. 1820 ถึง 2010 (ปี พ.ศ. 2363 ถึง พ.ศ. 2553) ${ }^{(2)}$

กล่าวคือการเพิ่มขึ้นของประชากรทำให้มีความต้องการอาหาร พลังงาน และวัสดุสิ่งของต่าง ๆ เพิ่มขึ้น จึงทำให้มี ความต้องการใช้ปัจจัยการผลิตเพิ่มมากขึ้นตามมา ทั้งแหล่งน้ำและที่ดิน ส่งผลต่อทางออกสุดท้ายคือการตัดไม้ทำลายป่า เพื่อขยายพื้นที่ทำกิน

การตัดไม้ทำลายป่ากับสภาวะโลกร้อน

ผืนดินบนโลกเป็นพื้นที่ป่าไม้ประมาณร้อยละ $30^{(5)(6)}$ ระหว่างปี ค.ศ. $1990-2005$ (พ.ศ. 2533-2548) พบว่า โลกสูญเสียพื้นที่ป่าไม้ไปถึงร้อยละ 3 และพบว่าในช่วง 20 ปีที่ผ่านมา อัตราการตัดไม้ทำลายป่ายังไม่ลดลงอย่างมีนัยสำคัญ พื้นที่ส่วนใหญ่ (ร้อยละ 96) ที่มีการตัดไม้ทำลายป่าเกิดขึ้นกับป่าไม้ในเขตร้อน (Tropical forest) ในอัตราสูงถึงประมาณ 81 ล้านไร่ต่อปี ซึ่งป่าไม้ในเขตร้อนถือว่ามีความสำคัญต่อระบบนิเวศของโลกเนื่องจากมีความหลากหลายทางชีวภาพสูส(${ }^{(6)}$ การตัดไม้ทำลายป่าเกิดจากสาเหตุหลายประการ แต่พอสรุปได้ว่ามาจาก 2 สาเหตุหลัก คือ เกิดขึ้นตามธรรมชาติ เช่น การเกิดไฟป่า และเกิดด้วยฝีมือมนุษย์ เหตุผลสำคัญที่มนุษย์ต้องตัดไม้ทำลายป่าคือ ความต้องการพลังงาน (ไม้ฟืนและ ถ่าน) ความต้องการเนื้อไม้ (เพื่อการก่อสร้างและประดิษฐ์สิ่งของ) และประการสำคัญคือ ความต้องการพื้นที่เพื่อผลิตอาหาร ทั้งในรูปแบบของพื้นที่เพาะปลูกพืชอาหาร และทุ่งหญู้าสำหรับการเลี้ยงสัตว์

การตัดไม้ทำลายป่านอกจากเป็นการทำลายระบบนิเวศ โดยทำให้พื้นดินเสื่อมโทรมและสูญเสียความอุดมสมบูรณ์ จนอาจกลายสภาพเป็นพื้นที่แห้งแล้งในลักษณะทะเลทรายแล้ว ยังส่งผลต่อสภาวะโลกร้อนอีกด้วย ประมาณการว่า การตัดไม้ทำลายป่ามีผลต่อการปลดปล่อยก๊าซคาร์บอนไดออกไซด์ของโลก (Global CO_{2} emissions) ประมาณ ร้อยละ $20^{(8)}$ สหภาพยุโรป (European Union, EU) ได้ตั้งเป้าในการลดการปลดปล่อยก๊าซคาร์บอนไดออกไซด์เพื่อ จำกัดการเพิ่มขึ้นของอุณหภูมิโลก ในขณะเดียวกันได้เรียกร้องให้หยุดการตัดไม้ทำลายป่าโดยเฉพาะในเขตร้อน พร้อมทั้ง ระบุว่าเป้าหมายที่ตั้งไว้จะไม่สามารถบรรลุได้หากขาดมาตรการหรือการดำเนินการที่จริงจังในการจัดการกับปัญหาการตัดไม้ ทำลายป่า ${ }^{(6)}$

เชื้อเพลิงฟอสซิลกับก๊าพคารั่บอนไดออกไซด์ในบรรยากาศ

ก่อนถึงยุคอุตสาหกรรมระดับของก๊าซคาร์บอนไดออกไซด์ที่มีอยู่ในบรรยากาศโลกอยู่ในระดับค่อนข้างคงที่ โดย มีความเข้มข้นระหว่าง $270-285$ ส่วนในล้าน (part per million, ppm) หรือมีค่าเฉลี่ย 278 ส่วนในล้าน แต่หลังจากนั้น เป็นต้นมาก๊าซคาร์บอนไดออกไซด์ในบรรยากาศได้เพิ่มขึ้นอย่างต่อเนื่องจนถึงระดับ 386 ส่วนในล้าน ในปี ค.ศ. 2009 (พ.ศ. 2552) หรือเพิ่มขึ้นประมาณร้อยละ 30 ในช่วงเวลาประมาณ 200 ปี่(7) (รูปที่ 3) การปลดปล่อยคาร์บอนจาก การเผาไหม้เชื้อเพลิงฟอสซิลได้เพิ่มขึ้นอย่างชัดเจนในช่วงระหว่างปี ค.ศ. 1850-2010 (พ.ศ. 2393-2553) (รูปที่ 4) ${ }^{(8)}$ โดยเฉพาะในช่วงตั้งแต่ปี ค.ศ. 1950 (พ.ศ. 2493) เป็นต้นมาจนถึงปัจจุบัน อัตราการปลดปล่อยคาร์บอนได้เพิ่มขึ้นอย่าง ก้าวกระโดด ซึ่งสอดคล้องกับการเพิ่มขึ้นของก๊าซคาร์บอนไดออกไซด์ในบรรยากาศโลก (รูปที่ 3) และที่น่าสนใจคือช่วงเวลา ที่มีการเพิ่มขึ้นของการปลดปล่อยคาร์บอนและก๊าซคาร์บอนไดออกไซด์ตั้งแต่ปี ค.ศ. 1950 เป็นต้นมานั้น สอดคล้อง กับการเพิ่มขึ้นของประชากรโลกตั้งแต่ช่วงปี ค.ศ. 1950 เช่นกัน (รูปที่ 2)

รูปที่ 3 ระดับความเข้มข้นเฉลี่ยของก๊าซคาร์บอนไดออกไซด์ในบรรยากาศ ${ }^{(7)}$

เชื้อเพลิงฟอสซิล: แหล่งพลังงานปฐมภูมิหลักของโลก

พลังงานฟอสซิลได้ก่อให้เกิดปัญหามลพิษหลายประการในทุกกระบวนการตั้งแต่การสำรวจ การผลิต การขนส่ง การแปรรูปเป็นผลิตภัณฑ์สำเร็จ (พร้อมใช้) และสิ้นสุดที่การนำมาใช้งาน โดยมีปัญหาที่สำคัญอย่างยิ่ง คือ การเพิ่มขึ้น ของก๊าซคาร์บอนไดออกไซด์ในบรรยากาศโลกจากการเผาไม้เชื้อเพลิงฟอสซิล ประกอบกับปัญหาความมั่นคงทางพลังงาน ของประเทศต่าง ๆ ที่ไม่มีแหล่งพลังงานฟอสซิลเป็นของตัวเอง หรือมีแต้ไม่เพียงพอต่อความต้องการใช้ภายในประเทศ โดยเฉพาะ อย่างยิ่งน้ำมันปิโตรเลียมที่เป็นเชื้อเพลิงหลักของภาคคมนาคมและขนส่งของทุก ๆ ประเทศในโลก ดังนั้นพลังงานฟอสซิล ยังคงสถานะเป็นพลังงานปฐูมภูมิที่สำคัญของโลก

รูปที่ 4 ประมาณการปริมาณคาร์บอนที่เข้าสู่บรรยากาศจากการเผาไหม้เชื้อเพลิงฟอสซิลระหว่าง ค.ศ. 1850 ถึง 2010 (พ.ศ. 2393 ถึง พ.ศ. 2553) ${ }^{(8)}$

พลังงานปฐฐมภูมิของโลกได้แก่ น้ำมันปิโตรเลียม ถ่านหิน ก๊าซธรรมชาติ พลังงานนิวเคลียร์ และพลังงาน ธรรมชาติ (พลังน้ำและแสงอาทิตย์) ซึ่งพลังงานฟอสซิล (พลังงานปฐูมภูมิสามลำดับแรก) มีสัดส่วนการใช้รวมกันโดยเฉลี่ย ร้อยละ 90 ของพลังงานปฐมภภูมิทั้งหมด ${ }^{(9)}$ ตารางที่ 1 แสดงให้เห็นชัดว่าพลังงานฟอสซิลเป็นพลังงานหลักของโลก และ ประเทศที่มีขนาดเศรษฐกิจขนาดใหญ่ ยกเว้น ประเทศฝรั่งเศสเพียงประเทศเดียวที่มีสัดส่วนของการใช้พลังงานฟอสซิล น้อยที่สุดในโลก (ประมาณร้อยละ 55.3 ของพลังงานทั้งหมดที่ใช้ในประเทศ) เนื่องจากมีการใช้พลังงานนิวเคลียร์สูงถึง ร้อยละ 39.1 (มากที่สุดในโลก)

ตารางที่ 1 สัดส่วนการใช้พลังงานปฐมภูมิ จากพลังงานฟอสซิล (พลังงานนิวเคลียร์ และพลังน้ำ ปี พ.ศ. 2550) ${ }^{(9)}$

พลังงาน	สัดส่วนการใช้ (ร้อยละ)						
	สหรัฐ	จีน	ญี่ปุ่น	เยอรมัน	ฝรั่งเศส	อังกฤษ	โลก
พลังงานฟอสซิล	89.4	93.4	84.1	87.9	55.3	92.5	88.0
น้ำมัน	39.9	19.7	42.2	36.2	35.8	36.2	35.6
ถ่านหิน	24.3	70.4	24.2	27.7	4.7	18.2	28.6
ก๊าซธรรมชาติ	25.2	3.3	15.7	24.0	14.8	38.1	23.8
พลังงานนิวเคลียร์	8.1	0.8	12.2	10.2	39.1	6.5	5.6
พลังงานน้ำ	2.4	5.9	3.7	2.0	5.6	1.0	6.4

พลังงานชีวภาพ: ทางออกของปัญหาของการใช้พลังงานฟอสซิล

การเพิ่มขึ้นอย่างรวดเร็วของก๊าาซคาร์บอนไดออกไซด์ ในช่วงเวลาสองร้อยปีเศษจากการใช้เชื้อเพลิงฟอสซิล อาจกล่าวได้ว่าเป็นสาเหตุสำคัญประการหนึ่งที่ทำให้เกิดภาวะโลกร้อน โดยปัญหามลพิษและสิ่งแวดล้อมจากพลังงาน ฟอสซิล พบตั้งแต่การสำรวจ การผลิต การขนส่ง และสิ้นสุดที่การนำมาใช้งาน การลดลงของเชื้อเพลิงฟอสซิลโดยที่ ธรรมชาตีไม่สามารถสร้างขึ้นมาทดแทนได้ทันต่อการใช้งานของมนุษย์ ประกอบกับความจำกัดในการกระจายตัวของแหล่ง พลังงานฟอสซิลทำให้เกิดปัญหาความมั่นคงทางพลังงาน ปัญหาต่าง ๆ จากการใช้พลังงานฟอสซิลดังกล่าวข้างต้นจึงทำให้ พลังงานชีวภาพซึ่งครั้งหนึ่งเคยมีบทบาทเป็นพลังงานหลักในยุคก่อนการปฏิวัติอุตสาหกรรม (ในรูปแบบของฟืนและถ่าน) กลับมามีบทบาทอีกครั้งหนึ่ง เพียงแต่ว่าในช่วง 200 ปีหลังนี้ พลังงานชีวภาพที่ได้รับความสนใจและพัฒนาขึ้นมาใช้ไม้ได้ อยู่ในรูปของฟืนและถ่านอีกต่อไป แต่อยู่ในรูปของไบโอดีเซลและเอทานอล ซึ่งอาจกล่าวได้ว่าตอบโจทย์เกือบในทุก ๆ ด้านของการใช้พลังงานฟอสซิลโดยเฉพาะในภาคคมนาคมและขนส่ง ตัวอย่างเช่น การลดการปลดปล่อยก๊าซ คาร์บอนไดออกไซด์ (การเผาไหม้เชื้อเพลิงฟอสซิลหรือเชื้อเพลิงชีวภาพล้วนก่อให้เกิดการปลดปล่อยก๊าซซคาร์บอน-ไดออกไซด์ สู่บรรยากาศ แต่ระหว่างช่วงปีของการเพาะปลูกพืชพลังงานได้ดึงดูดก๊าซคาร์บอนไดออกไซด์จากบรรยากาศและสังเคราะห์ เป็นน้ำมันหรือสารตั้งต้นพลังงาน ในขณะที่การเกิดเชื้อเพลิงฟอสซิลตามธรรมชาติใช้เวลานานนับล้านปี) และประการ สำคัญคือ เป็นการสร้างความมั่นคงด้านพลังงานให้กับประเทศผู้ผลิต และต่อโลก เมื่อแหล่งพลังงานฟอสซิลลดน้อยลง จนถึงอาจหมดลงไปในเวลาไม่กี่ร้อยปีนับจากนี้ ซึ่งต่างจากพลังงานชีวภาพที่สามารถผลิตขึ้นมาใช้ได้ภายในช่วงรอบปี ของการเพาะปลูก ทำให้สามารถผลิตขึ้นมาใช้ได้อย่างต่อเนื่องโดยไม่ต้องกังวลว่าจะหมดไปโดยไม่สามารถทดแทนได้ ดังเช่นพลังงานฟอสซิล

ความมั่นคงทางพลังงานกับความมั่นคงทางอาหาร

ประชากรของโลกเพิ่มสูงขึ้นทำให้ความต้องการอาหารและพลังงานสูงเพิ่มขึ้นเป็นเงาตามตัว การเปลี่ยนมาใช้พลังงาน ทดแทนด้วยพลังงานชีวภาพจากพืชอาหาร เช่น ข้าวโพด ถั่วลิลง อ้อย มันสำปะหลัง และปาล์ม เป็นต้น อาจนำไปสู่ความ ขัดเย้งดังต่อไปนี้

- การแย่งชิงทรัพยากรธรรมชาติ ผืนดินและทรัพยากรน้ำจืดเป็นปัจจัยธรรมชาติมีอยู่อย่างจำกัด แต่ความต้องการผืนดินเพื่อการเพาะปลูกมีมากขึ้นได้นำไปสู่การบุกรุกพื้นที่ป่าไม้และพื้นที่ธรรมชาติ ซึ่งถือได้ว่าเป็นหนึ่งในปัจจัยสำคัญที่ได้รับผลกระทบและส่งผลต่อระบบนิเวศและสิ่งแวดล้อมของ โลกโดยเฉพาะอย่างยิ่งเมื่อเกิดขึ้นในพื้นที่ป่าเขตร้อน
- ปัญหาความมั่นคงทางอาหาร การลดลงของผลผลิต (อาหาร) อาจนำไปสู่ปัญหาเรื่องราคาอาหาร ที่สูงขึ้น ความพอเพียงและการเข้าถึงอาหารในกลุ่มคนยากจนหรือด้อยโอกาส ซึ่งอาจนำไปสู่การ เกิดภาวะทุพโภชนาการโดยเฉพาะในเด็ก

ดังนั้นจึงเกิดแนวความคิดและนำไปสู่การวิจัยและการผลิตพลังงานชีวภาพจากสาหร่าย (Algal biofuel) ทั้งนี้ เพื่อ หลีกเลี่ยงปัญหาความขัดแย้งของการผลิตพลังงานชีวภาพจากพืชอาหารดังกล่าวข้างต้น

สาหร่าย: พลังงานยั่งยืนแห่งอนาคต

การผลิตพลังงานชีวภาพจากสาหร่ายไม่ใช่เพียงแนวคิดหรือเป็นความสนใจทางวิชาการหรือเป็นเพียงการวิจัยในระดับ ห้องปฏิบัติการอีกต่อไป แต่ได้รับความสนใจอย่างจริงจังที่จะพัฒนาจนถึงขั้นการผลิตเชิงอุตสาหกรรมและเชิงพาณิชย์เพื่อ ทดแทนพลังงานฟอสซิล ดังเช่นประธานาธิบดีบารัค โอบามา แห่งประเทศสหรัฐอเมริกา ได้ให้ความสนใจและสนับสนุน

อย่างจริงจังต่อการผลิตเชื้อเพลิงชีวภาพจากสาหร่าย โดยถือว่าพลังงานจากสาหร่ายเป็นพลังงานยั่งยืน (Renewable energy) ซึ่งนอกจากจะมีส่วนช่วยลดปัญหาสิ่งแวดล้อมเช่นสภาวะโลกร้อนแล้ว ยังมีความสำคัญอย่างยิ่งในการสร้างความมั่นคงด้าน พลังงานให้กับสหรัฐอเมริกา ด้วยการลดการพึ่งพาเชื้อเพลิงฟอสซิลจากต่างประเทศ และมีข้อดีหรือประโยชน์อื่นต่อประเทศคือ เป็นการพัฒนาอุตสาหกรรมเทคโนโลยีชีวภาพของสหรัฐอเมริกาให้เข้มแข็งขึ้น รวมทั้งสร้างงานให้กับประชาชนชาวอเมริกัน อีกด้วย ${ }^{(10)}$ ต่อไปนี้เป็นกรณีตัวอย่างที่แสดงให้เห็นถึงความจริงจังของประเทศสหรัฐอเมริกาต่อการพัฒนาเชื้อเพลิงชีวภาพ จากสาหร่าย

ถารให้ทุนสนับสนุนการพัฒนาพลังงานชีวภาพ

ในปี ค.ศ. 2012 (ปี พ.ศ. 2555) กระทรวงเกษตรแห่งสหรัฐอเมริกา (U.S. Department of Agriculture, USDA) กองทัพเรือ และกระทรวงพลังงาน (DOE) ได้ให้ทุนสนับสนุนรวม 62 ล้านดอลลาร์สหรัฐ (USD) เพื่อ การวิจัยอุตสาหกรรมพลังงานชีวภาพ โดยเน้นการผลิต Renewable biofuel จากชีวมวลที่ไม่ใช้เป็นอาหาร (Non-food biomass) จากของเสียต่าง ๆ และจากสาหร่าย ${ }^{(10)}$ มีโครงการวิจัยดังต่อไปนี้

โครงการ Navy's Green Fleet

ทดลองการใช้พลังงานชีวภาพในการซ้อมรบทางทะเลของประเทศสหรัฐและประเทศพันธมิตรในพื้นที่มหาสมุทร แปซิฟิก โดยในช่วงเดือนกรกฎาคมปี พ.ศ. 2555 ได้มีการทดลองใช้เชื้อเพลิงชีวภาพกับเครื่องบินและเรือรบบางส่วน เพื่อประเมินผลสัมฤทธิ์ของการใช้เชื้อเพลิงชีวภาพ น้ำมันเชื้อเพลิงที่ทดสอบเป็นส่วนผสมระหว่างเชื้อเพลิงปิโตรเลียม และเชื้อเพลิงชีวภาพที่ผลิตจากน้ำมันสาหร่าย (Algae Oil) และน้ำมันปรุงอาหารที่ใช้แล้ว (Waste Cooking Oil) ในสัดส่วน $50: 50^{(11)}$

โครงการ OMEGA

ในช่วงระหว่างปี ค.ศ. 2009-2012 (พ.ศ. 2552-2555) องค์การบริหารการบินและอวกาศ แห่งสหรัฐอเมริกา หรือ NASA ${ }^{(12)}{ }^{(13)}$ (14) ได้วิจัยและพัฒนาการผลิตเชื้อเพลิงจากสาหร่ายตามโครงการ OMEGA System หรือ Offshore Membrane Enclosures for Growing Algae (รูปที่ 5) โดยมีเป้าหมายให้เป็นเชื้อเพลิงทางเลือกสำหรับอากาศยาน และเป็นพลังงานชีวภาพที่ยั่งยืน (Sustainable biofuels) เพื่อทดแทนการใช้เชื้อเพลิงฟอสซิล ด้วยวิธีการเพาะเลี้ยงสาหร่าย ด้วยน้ำเสียใน Photobioreactor และใช้พื้นที่ในมหาสมุทรซึ่งจะทำให้หมดปัญหาการแย่งชิงน้ำจืด ธาตุอาหารและพื้นที่ เพาะปลูกกับระบบการเกษตร (พืชอาหาร) ผลพลอยได้หรือประโยชน์อื่น ๆ คือ
(1) ช่วยลดก๊าซคาร์บอนไดออกไชด์ (เนื่องจากถูกดึงมาใช้ในการสังเคราะห์แสง)
(2) ช่วยกำจัดไนโตรเจนและฟอสฟอรัสซึ่งเป็นสารมลพิษในน้ำเสีย (ปกติก่อให้เกิดปัญหา Eutrophication หรือ Algal bloom ในทะเลและมหาสมุทร) โดยนำมาใช้ประโยชน์แทนเป็นสารอาหารในการเพาะเลี้ยงสาหร่ายแทน การใช้ปุ้ย
(3) กากสาห่ายที่เหลือหลังจากสกัดน้ำมันจากสาหร่ายแล้วสามารถนำมาผลิตเป็นปุ๋ย เป็นอาหาร เป็นเครื่องสำอางค์ และผลิตภัณฑ์ที่มีมูลค่าอื่น ๆ
(4) ลดสภาวะความเป็นกรดของมหาสมุทร (Ocean acidification)
(5) เพิ่มความมั่นคงทางพลังงานให้กับประเทศชาติ

รูปที่ 5 ระบบทดลองการเพาะเลี้ยงสาหร่ายเพื่อผลิตเชื้อเพลิงชีวภาพขององค์การบริหารการบินและอวกาศ (NASA) ${ }^{(12)}$

ปัญหาและข้อจำกัดของการผลิตพลังงานจากสหร่าย

การผลิตเชื้อเพลิงชีวภาพจากสาหร่ายได้ขจัดข้อถกเถียงต่าง ๆ ที่เกิดจากการผลิตเชื้อเพลิงชีวภาพจากพืชพลังงาน โดยเฉพาะในประเด็นสำคัญที่กี่ยวกับการใช้ที่ดิน และแหล่งน้ำจืด เป็นต้น ซึ่งตรงตามวัตถุประสงค์ ที่กำหนดไว้คือ การพัฒนา พลังงานชีวภาพของประเทศสหรัฐอเมริกา ต้องไม่ใช่พืชอาหาร แต่คณะกรรมการจากสภาวิจัยแห่งชาติ (National Research Council) ${ }^{(15)}$ ของประเทศสหรัฐๆ ได้ชี้ประเด็นที่ควรคำนึงถึงต่อความยั่งยืนของการพัฒนาการผลิตพลังงานชีวภาพจากสหหร่าย ในปริมาณสูง โดยวิเคราะห์ความยั่งยืนโดยยกกรณีที่มีการกำหนดเป้าหมายการทดแทนการใช้เชื้อเพลิงปิโตรเลียมในภาค การขนส่งของประเทศที่ร้อยละ 5 หรือคิดเป็นกำลังการผลิตเชื้อเพลิงสาหร่ายประมาณ 39 พันล้านลิตร คณะกรรมการฯ ได้ชี้ประเด็นต่าง ๆ และสรุปสาระสำคัญได้ดังนี้
(1) ปริมาณน้ำจืดที่ใช้ คณะกรรมการๆ พบว่าความต้องการใช้น้ำจืดเพื่อการผลิตเชื้อเพลิงสาหร่ายที่เทียบเท่า กับน้ำมันเบนซิน (gasoline) หนึ่งลิตร มีความผันแปรตั้งแต่ 3.15 ถึง 3,650 ลิตร ทั้งนี้ขึ้นกับกรรมวิธีการผลิต เช่น การหมุนเวียนน้ำกลับมาใช้ใหม่ เป็นต้น ปัจจัยอื่น ๆ เช่น อัตราการระเหยน้ำ เป็นต้น
(2) ปริมาณธาตุอาหาร (ไนโตรเจน และฟอสฟอรัส) ในการผลิตเชื้อเพลิงสาหร่าย 39 พันล้านลิตร จำเป็นต้อง ใช้ไนโตรเจน $6-15$ ล้านเมตริกตัน และฟอสฟอรัส $1-2$ ล้านเมตริกตันในแต่ละปี หรือเทียบเท่าความต้องการใช้ในโตรเจน และฟอสฟอรัสทั้งหมดภายในประเทศร้อยละ $44-107$ และ $20-51$ ตามลำดับ อย่างไรก็ตามคณะกรรมการฯ กล่าวว่าหาก มีการหมุนเวียนการใช้ธาตุอาหารหรือการใช้น้ำเสียจากเกษตรกรรมหรือชุมชนจะช่วยลดความต้องการปริมาณธาตุอาหารลงได้
(3) พื้นที่เพาะเลี้ยงสาหร่าย มีประเด็นที่ต้องคำนึงถึงดังนี้

- ขนาดพื้นที่ (ผืนดิน) ที่อาจต้องใช้มากกรณีเพาะเลี้ยงระบบเปิด (เพาะเลี้ยงในบ่อ)
- ความเหมาะสมของพื้นที่

1) สภาพภูมิประเทศ
2) สภาพภูมิอากาศ
3) ความใกล้ไกลกับแหล่งน้ำ ไม่ว่าจะเป็นแหล่งน้ำจืด น้ำเค็ม (Inland saline water) ทะเล หรือ น้ำเสีย
4) ระยะทางระหว่างพื้นที่กับแหล่งธาตุอาหาร
5) ราคาที่ดิน

อย่างไรก็ตามประเด็นดังกล่าวข้างต้นขึ้นอยู่กับวิถีการผลิตเชื้อเพลิงสาหร่ายซึ่งมีอยู่หลากหลาย และมีผลต่างกัน ข้อสังเกตของคณะกรรมการๆ ไม่ถือว่าเป็นอุปสรรคขวางกั้นการพัฒนาเชื้อเพลิงชีวภาพจากสาหร่าย แต่เป็นการย้ำเน้นให้ เห็นถึงความจำเป็นที่จะต้องทำการวิจัยและพัฒนาเพื่อให้เชื้อเพลิงจากสาหร่ายสามารถใช้เป็นพลังงานสำหรับภาคคมนาคม และขนส่งในอนาคต (ซึ่งหมายถึงสามารถผลิตในเชิงอุตสาหกรรมได้ไดยไม่มีปัญหาด้านความยั่งยืนดังกล่าวข้างต้น)

ตัวอย่างการวิจัยและพัฒนาพลังงานจากสาหร่าย

การวิจัยและพัฒนาต่าง ๆ ที่น่าสนใจในการผลิตเชื้อเพลิงชีวภาพจากสาหร่าย เพื่อให้ตอบสนองต่อความเป็นไปได้ ของการเป็นแหล่งพลังงานยั่งยืนและสามารถใช้ทดแทนพลังงานฟอสซิล ดังนี้

การเลือกพื้นที่เพาะเลี้ยงง(16)(17) นักวิจัยจาก Department of Energy's Pacific Northwest National Laboratory ได้รายงานถึงความเป็นไปได้ของการผลิตน้ำมันสาหร่าย 21 พันล้านแกลลอน ซึ่งเป็นปริมาณเป้าหมายภายในปี ค.ศ. 2022 (ปี พ.ศ. 2565) ที่กำหนดโดยกฎหมายพลังงานๆ (Energy Independence and Security Act) โดยมีข้อกำหนดที่ใช้ พิจารณาคือ (1) เป็นแหล่งน้ำอื่น ๆ ที่สามารถใช้เพาะเลี้ยงสาหร่ายนอกเหนือไปจากการใช้น้ำจืด (Inland fresh water) ได้แก่ การใช้น้ำบาดาล (ทั้งน้ำจืดดลละน้ำเค็ม) น้ำทะเล เป็นต้น (2) เป็นพื้นที่ที่ได้รับแสงอาทิตย์เต็มที่ และ (3) เป็น พื้นที่ที่มีอากาศร้อนชื้น จากการประเมินพบว่าบริเวณที่เหมาะสมตามข้อกำหนดคือ บริเวณพื้นที่ชายฝั่งทะเลภาคตะวันออก เฉียงใต้ของอเมริกา (SE Seaboard) และบริเวณชายฝั่งริมอ่าว (Gulf coast)

การพัฒนาสายพันธุ์สาหร่ายน้ำเค็ม ${ }^{(18)}$ จากการศึกษาของมหาวิทยาลัย UC San Diego ได้มีข้อเสนอแนะว่า การผลิตเชื้อเพลิงชีวภาพสามารถทำได้ในมหาสมุทร น้ำกร่อยหรือแม้แต่บนพื้นที่กกตรกรรมที่มีปัญหาดินเค็มและไม่สามารใช้ เพาะปลูกได้อีกต่อไป โดยการใช้สาหร่ายน้ำเค็มหรือ Marine algae โดยนักชีววิทยาจากมหาวิทยาลัย UC San Diego ได้เลือกศึกษาสาหร่ายสายพันธุ์ Dunaliella tertiolecta เนื่องจากพบว่ามีปริมาณน้ำมันสูง และเติบโตได้เร็วในน้ำที่มี สภาพความเค็มในช่วงกว้างและเป็นกรด ผู้วิจัยได้ให้ข้อมูลเพิ่มเติมว่าในประเทศสหรัฐอเมริกามีพื้นที่ประมาณ 10 ล้านเอเคอร์ (25 ล้านไร่) ที่ไม่เหมาะสมต่อการเพาะปลูก แต่สามารถใช้เพาะเลี้ยงสาหร่ายน้ำเค็มได้ ประเด็นสำคัญของการศึกษาครั้งนี้ อีกประการหนึ่งคือ สามารถใช้น้ำจากมหาสมุทรในการเพาะเลี้ยงสาหร่าย ซึ่งในทรรศนะของผู้วิอัยเห็นว่าน้ำในมหาสมุทร เป็นปัจจัยที่ไม่มีข้อจำกัดบนพื้นโลกใบนี้

การเพาะเลี้ยงสาหร่ายในมหาสมุทร ${ }^{(19)}$ ผู้วิจัยจากมหาวิทยาลัย Kansas State ได้ทำการศึกษาความเป็นไปได้ของ การเพาะเลี้ยงสาหร่ายปริมาณสูงในมหาสมุทร โดยเลือกสายพันธุ์ของสาหร่ายที่มีปริมาณน้ำมันสูง เติบโตได้เร็ว และสามารถ เจริญเติบโตบนผิวของวัสดุแข็งร่วมกับการออกแบบทางวิศวกรรมของระบบการเก็บเกี่ยวผลผลิต ข้อดีของระบบการผลิต ดังกล่าว คือ อาศัยมหาสมุทรเป็นแหล่งน้ำ และแหล่งอาหารของสาหร่าย

การปรับกระบวนการผลิตไบโอดีเซลจากสาหร่าย ${ }^{(20)}$ เนื่องจากต้นทุนกระบวนการผลิตเป็นหนึ่งในปัญหาของ การผลิตไบโอดีเซลจากน้ำมันสาหร่าย นักวิจัยจึงได้ทดลองเปลี่ยนระบบการผลิตจากเดิมที่ใช้ตัวเร่งปฏิกิริยาที่เป็นของเหลว

มาเป็นของแจ็งแทน ในแบบ "Continuously flowing fixed-bed" ข้อดีของการใช้ตัวเร่งปิกิริยาที่เป็นของแข็ง คือ ทำให้ต้นทุนการผลิตลดต่ำลงเนื่องจากเป็นระบบการผลิตแบบต่อเนื่อง (ระบบเดิมใช้ตัวเร่งปฏิกิริยาที่เป็นของเหลวซึ่งมี ลักษณะการทำงานเป็นแบบ Batch process) ช่วยลดเวลาในการผลิต ไม่มีขั้นตอนการกำจัดด่างในการผลิต และตัวเร่ง ปฏิกิริยาสามารถใช้ซ้ำได้ ระบบใหม่สามารถลดต้นทุนลงได้ถึงร้อยละ 40 เมื่อเทียบกับระบบเดิม ข้อดีอีกประการคือ ไม่มีน้ำเสียเกิดขึ้นในกระบวนการผลิต ปัจจุบันโครงการนำร่องสามารถผลิตไบโอดีเซลจากสาหร่ายได้เกือบ 1 ล้านแกลลอน ต่อปี และเชื่อว่ามีความเป็นไปได้ที่จะขยายกำลังผลิตได้ถึง 50 ล้านแกลลอนในอนาคต ซึ่งงานวิจัยนี้ได้รับทุนสนับสนุน จาก The National Science Foundation

ประเทศไไยกับการพัฒนาพลังงานจากสาหร่าย

ประเทศไทยเป็นประเทศเกษตรกรรมดังนั้นอาจกล่าวได้ว่าไม่มีปัญหาความมั่นคงทางอาหารเช่นเดียวกับหลาย ๆ ประเทศในโลกประสบอยู่ โดยเฉพาะอย่างยิ่งประเทศที่ถูกจัดเป็นประเทศในโลกที่สามที่มีปัญหาความยากจนและทุพโภชนาการ แต่ต้องยอมรับว่าประเทศไทยมีความเสี่ยงต่อปัญหาความมั่นคงทางพลังงานระดับหนึ่ง เนื่องจากประเทศ่ไทยยังต้องนำเข้าพลังงาน จากต่างประเทศซึ่งส่วนใหญ่เป็นพลังงานฟอสซิล แม้ว่าประเทศไทยจะมีแหล่งพลังงานฟอสซิลทั้งก๊าซธรรมชาติ ถ่านหิน และน้ำมันดิบแต่มีปริมาณที่ไม่เพียงพอ เช่นในปี พ.ศ. 2555 ประเทศไทยใช้พลังงาน 73.3 ล้านตัน (เทียบเท่าน้ำมันดิบ) โดยต้องนำเข้าจากต่างประเทศ 69.7 ล้านตัน (เทียบเท่าน้ำมันดิบ) และเป็นพลังงานฟอสซิลถึง 68.7 ล้านตัน (เทียบเท่า น้ำมันดิบ) หรือคิดเป็นร้อยละ 93.7 ของการนำเข้าพลังงานทั้งหมด และส่วนใหญ่เป็นน้ำมันดิบ (ร้อยละ 61.6 ของ พลังงานที่นำเข้าทั้งหมด) รองลงมาเป็นถ่านหิน (ร้อยละ 16.7) และก๊าซธรรมชาติ (ร้อยละ 14.2) และเมื่อจำแนก การใช้พลังงานตามภาคเศรษฐึกิจ พบว่าเป็นการใช้ในภาคขนส่งถึงร้อยละ 35.8 ของการใช้พลังงานทั้งหมด และรูปแบบพลังงาน ที่ใช้ในภาคขนส่งเป็นน้ำมันสำเร็จรูป (มากกว่าร้อยละ 90$)^{(21)}$ ภาคขนส่งเป็นพื้นฐานที่สำคัญมากต่อการขับเคลื่อนภาคเศรษฐิกจ และการพัฒนาประเทศ รวมทั้งชีวิตความเป็นอยู่ของประชาชน ดังนั้นจึงไม่น่าแปลกใจว่าในแผนงานสร้างความมั่นคงทาง พลังงานของประธานาธิบดีบารัค โอบามา จึงสนับสนุนการพัฒนาและผลิตพลังงานชีวภาพเพื่อนำมาใช้ในภาคคมนาคมและขนส่ง เป็นภาคแรก สำหรับประเทศไทยได้มีการสนับสนุนและกำหนดแผนการใช้เชื้อเพลิงชีวภาพในภาคคมนาคมและขนส่ง โดยการใช้น้ำมันเบนซินก๊าซโซฮอล์และไบโอดีเซล

ประเทศบราซิลเป็นตัวอย่างของประเทศที่ประสบความสำเร็จของการผลิตเอทานอลในระดับอุตสาหกรรม เพื่อใช้เป็นเชื้อเพลิงทดแทนน้ำมันปิโตรเลียมในภาคคมนาคมและขนส่งจนถึงสามารถผลิตเอทานอลเพื่อการส่งออก แต่ประเทศบราซิลได้สูญเสียพื้นที่ของป่าไม้ในลุ่มน้ำอะเมซอนประมาณร้อยละ 17 ในรอบ 50 ปีที่ผ่านมา ${ }^{(5)}$

กล่าวได้ว่าความพยายามในการหาแหล่งพลังงานอื่น ๆ เพื่อใช้ทดแทนเชื้อเพลิงฟอสซิล เพื่อมุ่งุแก้ไขปัญหาที่สำคัญ คือปัญหาความมั่นคงทางพลังงานจากการร่อยหรอของเชื้อเพลิงฟอสซิลและความจำกัดของการกระจายตัวของแหล่ง พลังงานฟอสซิลแล้ว และแก้ปัญหาโลกร้อนพร้อมกันไปด้วย ทำให้หลาย ๆ ประเทศในโลกต้องพึ่งพาพลังงานจากต่างประเทศ เช่น ประเทศไทยซึ่งต้องพึ่งพาพลังงานจากนอกประเทศมากกว่าร้อยละ 90 หากมุ่งที่จะพัฒนาเชื้อเพลิงชีวภาพขึ้นมาทดแทน เชื้อเพลิงฟอสซิลโดยเฉพาะในภาคคมนาคมและขนส่ง โดยส่งเสริมการใช้เอทานอลและไบโอดีเซลซึ่งผลิตจากพืชอาหาร ได้แก่ มันสำปะหลัง อ้อยและปาล์ม เป็นต้น ไม่ว่าจะด้วยเหตุผลด้านสิ่งแวดล้อม ด้านเศรษฐกิิจ หรือด้านความมั่นคง ทางพลังงานก็ตาม มีสิ่งที่ต้องคำนึงถึงเป็นอย่างมากดังนี้

- ปัญหาการบุกรุกพื้นที่ธรรมชาติและป่าไม้ เนื่องจากในช่วงครึ่งศตวรรษที่ผ่านมากล่าวได้ว่าประเทศไทย ล้มเหลวโดยสิ้นเชิงกับการป้องกันและแก้ไขปัญหาการตัดไม้ทำลายป่าและการบุกรุกพื้นที่ธรรมชาติ ในปี พ.ศ. 2504 ประเทศไทยเคยมีพื้นที่ป่าไม้ถึงร้อยละ 53.3 ของพื้นที่ทั้งประเทศ และใน ปี พ.ศ. 2542 หรือ ประมาณ 40 ปีต่อมา พื้นที่ป่าไม้เหลือเพียงร้อยละ 25.0 หรือลดลงไปกว่าครึ่ง ${ }^{(22)}$ ดังนั้นการพัฒนาและ ส่งเสริมการใช้เชื้อเพลิงชีวภาพจากพืชอาหารอาจเพิ่มแรงกดดันให้มีการตัดไม้ทำลายป่าและบุกรุกพื้นที่ ธรรมชาติมากขึ้น
- ปัญหาความพอเพียงของแหล่งน้ำ ถ้ามีการขยายพื้นที่เพื่อปลูกพืชพลังงาน (พืชอาหารที่แปลงให้เป็น เชื้อเพลิงชีวภาพ) อาจนำไปสู่การแย่งชิงทรัพยากรน้ำ
- ปัญหาราคาของพืชอาหารและความยั่งยืน มีตัวอย่างที่เห็นได้ชัดเจนคือกรณีขาดแคลนน้ำมันปาล์มเพื่อ การบริโภคในช่วงสองสามปีที่ผ่านมาจนถึงกับต้องหยุดการผลิตไบโอดีเซลจากน้ำมันปาล์มชั่วคราว รวมทั้งยังต้องนำเข้าน้ำมันปาล์มจากต่างประเทศ

การพัฒนาเชื้อเพลิงชีวภาพของประเทศสหรัฐอเมริกาถือได้ว่าเป็นตัวอย่างที่ดีในการวางกรอบการพัฒนาและ การผลิตโดยเน้นชีวมวลที่ไม่นำมาเป็นอาหาร หรือ Non-food biomass ดังนั้น

การพัฒนาเชื้อเพลิงชีวภาพจากสาหร่ายน่าจะเป็นทางออกที่ดีสำหรับประเทศไไย เพราะมีสภาพภูมิอากาศที่ เหมาะสมต่อการเพาะเลี้ยงสาหร่าย มีแสงแดดเกือบตลอดปี มีพื้นที่หลายแห่งที่เป็นพื้นที่ที่ขาดความอุดมสมบูรณ์หรือพื้นที่ ดินเค็มและไม่เหมาะสมต่อการเพาะปลูกพืชเศรษฐกิจ เป็นต้น

เพื่อประโยชน์ของประเทศทั้งในด้านสิ่งแวดล้อม ด้านเศรษฐกิจ และด้านความมั่นคงทางพลังงาน ประเทศไทย ควรมีนโยบายและกำหนดเป้าหมายที่ชัดเจนในการพัฒนาและผลิตเชื้อเพลิงชีวภาพจากสาหร่าย เพื่อใช้ทดแทนน้ำมัน ปิโตรเลียมโดยคำนึงถึงปัจจัยของความยั่งยืนโดยนำข้อคิด ความรู้และประสบการณ์จากประเทศต่าง ๆ ที่กำลังพัฒนา เชื้อเพลิงชีวภาพจากสาหร่ายอย่างจริงจังมาใช้ประกอบเป็นบทเรียนและแบบอย่างในการพัฒนา เช่นในกรณีของประเทศสหรัฐ อเมริกา เป็นต้น แต่จะต้องให้ความสำคัญอย่างมากที่สุดกับการสร้างจิตสำนึกของคนไทย ให้มองเห็นและตระหนักถึง คุณค่าของทรัพยากรธรรมชาติ และนำไปสู่การใช้ทรัพยากรธรรมชาติต่าง ๆ อย่างชาญฉลาด เพื่อความยั่งยืนและมั่นคง ของประเทศไทยในระยะยาว

เอกสารอ้างอิง

$1 \mathrm{http}: / / \mathrm{www} . m h i-g l o b a l . c o m / d i s c o v e r / e a r t h / i s s u e / h i s t o r y / h i s t o r y . h t m l$. .Retrieved October 18, 2013
2. http://www.financialsense.com/contributors/gail-tverberg/world-energy-consumption-since-1820-in-charts. Retrieved October 18, 2013
3. United Nations, World Population To 2300, ST/ESA/SER.A/236, New York, 2004
4. http://www.worldbank.org/depweb/english/modules/social/pgr/index03.html. Retrieved October 11, 2013
5. http://worldwildlife.org/threats/deforestation. Retrieved October 11, 2013
6. http://ec.europa.eu/clima/policies/forests/deforestation/index_en.htm. Retrieved October 11, 2013
7. http://www.csiro.au/greenhouse-gases. Retrieved October 17, 2013
8. http://cdiac.ornl.gov/trends/emis/prelim_2009_2010_estimates.html. Retrieved October 17, 2013
9. http://www.mhi-global.com/discover/earth/issue/history/history.html. Retrieved October 18, 2013 10. http://www.algaeindustrymagazine.com/us-funding-62m-to-biofuels-industry Retrieved July 02,2013
11. http://www.algaeindustrymagazine.com/navys-green-fleet-on-display-amidst-troubled-waters. Retrieved July 02,2013
12. http://www.nasa.gov/centers/ames/research/OMEGA/index.html. Retrieved October 25, 2013
13. http://www.nasa.gov/centers/ames/news/features/2012/omega_algae_feature.html\#.UmiclnBHIZ9. Retrieved October 18, 2013
14. http://www.nasa.gov/centers/ames/news/releases/2009/09-147AR.html. Retrieved October 18, 2013
15. National Academy of Sciences. "Large-scale production of biofuels made from algae poses sustainability concerns." ScienceDaily, 24 Oct. 2012. Web. 20 Sep. 2013.
16. DOE/Pacific Northwest National Laboratory. "Algae could replace 17 percent of US oil imports, study finds." ScienceDaily, 14 Apr. 2011. Web. 20 Sep. 2013.
17. DOE/Pacific Northwest National Laboratory. "Going green: U.S. equipped to grow serious amounts of pond scum for fuel." ScienceDaily, 21 May 2013. Web. 20 Sep. 2013.
18. University of California, San Diego. "Bioengineered marine algae expands environments where biofuels can be produced.'ScienceDaily, 26 Nov. 2012. Web. 20 Sep. 2013.
19. Kansas State University. "Engineers Strive To Make Algae Oil Production More Feasible.'ScienceDaily, 4 Nov. 2009. Web. 20 Sep. 2013.
20. American Chemical Society. "First Economical Process' For Making Biodiesel Fuel From Algae.'ScienceDaily, 31 Mar. 2009. Web. 20 Sep. 2013.
21. กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน กระทรวงพลังงาน รายงานการอนุรักษ์พลังงานของประเทศไทย ๒๕ะ๕๕ ISSN 2286-7465
22. http://www.fao.org/docrep/003/x6967e/x6967e09.htm. Retrieved October 11, 2013

