

อาจาร์์ ดร.สุทธิรัตน์ กิตติพงย์่ิเศย *
ดร.ภุมรินทร์ กำาดชกักดิ์ *

บทนำ

เมื่อพิจารณาถึงความเจริญทางด้านเศรษฐูกิจและความก้าวหน้าทางวิทยาศาสตร์และเทคโนโลยีแล้ว อาจกล่าวได้ว่าอุตสาหกรรมเหมื่องแร่เป็นภาคส่วนที่มีความสำคัญเป็นอันดับต้นของประเทศในฐานะ อุตสาหกรรมต้นน้ำ หรือภาคการผลิตขั้นต้นก่อนส่งวัตถุดิบต่อไปยังอุตสาหกรรมปลายน้ำเพื่อตอบสนอง ความต้องการพื้นฐานของผู้บริโภคในลำดับต่อไป อย่างไรก็ตาม ถึงแม้ว่าผลผลิตของอุตสาหกรรม เหมืองแร่จะมีมูลค่าทางเศรษฐิกิจและมีบทบาทสำคัญใในเชิงพาณิชย์ หากแต่กระบวนการผลิตที่เกี่ยวข้อง มีแนวโน้มที่จะส่งผลกระทบต่อทรัพยากรธรรมชาติและสิ่งแวดล้อมอย่างหลีกเลี่ยงไม่ได้โดยปัญหาที่พบ ส่วนใหญ่ได้แก่ มลพิษทางน้ำ อากาศและดินรวมถึงปัญหาสุขภาพอนามัยและความเสี่ยงของประชาชน ในพื้นที่ที่ต้องสัมผัสกับโลหะหนัก จำพวก สารหนู ตะกั่วซึ่งอาจรั่วไหลมาจากน้ำเสีย กากของเสียและ ส่วนที่เหลือจากกระบวนการผลิตแร่ การแต่งแร่และการประกอบโลหะกรรม เป็นต้น นอกจากปัญหา การปนเปื้อนทางสิ่งแวดล้อมแล้ว กระบวนการผลิตของอุตสาหกรรมดังกล่าวมีแนวโน้มการใช้ทรัพยากร และพลังงานที่สิ้นเปลืองซึ่งเกิดจากกิจกรรมที่เกี่ยวข้องกั่บการเผาไหม้น้ำมันเชื้อเพลิงของเครื่องยนต์ใน กระบวนการขนส่งแร่ รวมถึงกิจกรรมการใช้ไฟฟ้าในการเดินเครื่องจักรกลในกระบวนการผลิต เป็นต้น โดยกิจกรรมดังกล่าวข้างต้นนับเป็นสาเหตุหนึ่งของการปล่อยก๊าซเรือนกระจกสู่ชั้นบรรยากาศ หรือตัวการ สำคัญของปัญหาโลกร้อนและการเปลี่ยนแปลงสภาพภูมิอากาศที่เกิดขึ้นอีกด้วยด้วยเหตุนี้ การพัฒนาฐาน ข้อมูลและศึกษาถึงแนวทางการใช้เครื่องมือเพื่อประเมินผลกระทบสิ่งแวดล้อม จึงมีความสำคัญและ จำเป็นอย่างยิ่งในการเตรียมความพร้อมให้ผู้ประกอบการอุตสาหกรรม นักวิเคราะห์นโยบายและแผน รวมทั้งผู้มีส่วนได้เสียได้ใช้เป็นข้อมูลประกอบการตัดสินใจวิเคราะห์แนวทางเลือกในการจัดการคุณภาพ สิ่งแวดล้อมและดำเนินการบริหารทรัพยากรสิ่งแวดล้อมในกระบวนการผลิตในอุตสาหกรรมเหมืองแร่ โลหะหนักที่เหมาะสมต่อไป บทความนี้มีวัตถุประสงค์เพื่อนำเสนอถึงแนวทางการวิเคราะห์ผลกระทบ สิ่งแวดล้อมในอุตสาหกรรมเหมืองแร่โดยอาศัยการประเมิน

วัฏจักรชี่วิต ของกระบวนการผลิตทั้งในและต่างประเทศ ตลอดจนอภิปรายถึงอุปสรรคและความ ท้าทายของการดำเนินงานอันจะเป็นประโยชน์ต่อการพัฒนาองค์ความรู้สำหรับการศึกษาวิจัยครอบคลุม ประเด็นต่างๆ ที่เกี่ยวข้องต่อไป

[^0]
หลักการประเมินวัฏจักรชีวิต (Life Cycle Assessment; LCA)

การประเมินวัฏจักรชีวิตหมายถึงกระบวนการวิเคราะห์และประเมินผลกระทบ (เชิงปริมาณ) ที่มีต่อสิ่งแวดล้อม ซึ่งพิจารณาตลอดช่วงชีวิตของผลิตภัณฑ์หรือบริการตั้งแต่เกิดจนตาย โดยครอบคลุมกระบวนการผลิตและกิจกรรมที่เกี่ยว เนื่องกันในรูปของวัตถุดิบและพลังงาน (จันทิมา, 2559) ทั้งนี้ โครงการสิ่งแวดล้อมแห่งสหประชาชาติ (United Nations Environment Programme; UNEP, 2016) ได้แบ่งการประเมินวัฏจักรชีวิตออกเป็น 4 ขั้นตอน (รูปที่ 1) ดังนี้
(1) การกำหนดเป้าหมายและขอบเขตของการศึกษา : เป็นขั้นตอนแรกของกระบวนการแรกของการประเมิน วัฏจักรชีวิตผลิตภัณฑ์หรือบริการ โดยการระบุวัตถุประสงค์ เป้าหมายและขอบเขตของการศึกษาได้แก่การระบุหน่วยการศึกษา หรือหน่วยหน้าที่ ขอบเขตของระบบที่พิจารณา ตลอดจน สมมติฐานและข้อจำกัดของการศึกษา เป็นต้น
(2) การวิเคราะห์เพื่อจัดทำบัญชีรายการสิ่งแวดล้อม :เป็นการรวบรวมและจัดทำบัญชีรายการหรือข้อมูลที่แสดง ชนิดและปริมาณสารขาเข้า ได้แก่ วัตถุดิบ ทรัพยากรและพลังงาน สารขาออก ได้แก่ผลิตภัณฑ์และผลิตผลผลพลอยได้ ตลอดจน มลสารที่ปล่อยสู่สิ่งแวดล้อมทั้งอากาศ น้ำหรือของเสียที่อยู่ในรูปของแข็ง เป็นต้น
(3) การประเมินผลกระทบสิ่งแวดล้อม: เป็นการประเมินผลกระทบด้าน สิ่งแวดล้อม อาศัยข้อมูลที่ได้จากบัญชี รายการสิ่งแวดล้อมทั้งจากสารขาเข้าและสารขาออกรวมถึงมลพิษที่เกิดขึ้น โดยการจำแนกประเภท การกำหนดบทบาท และ การให้น้ำหนักและความสำคัญของผลกระทบแต่ละประเภท เป็นต้น
(4) การแปลผลการศึกษา:เป็นการนำผลศึกษาที่ได้จากการประเมินวัฏจักรชีวิตมาวิเคราะห์เพื่อสรุปผลและให้ข้อ เสนอแนะที่มีความสอดคล้องกับเป้าหมายและขอบเขตของการศึกษาที่ตั้งไว้ในขั้นตอนแรก

รูปที่ 1 ขั้นตอนการประเมินวัฏจักรชีวิต (UNEP, 2016)
การประเมินวัฏจักรชีวิตเพื่อวิเคราะห์ผลกระทบด้านการเปลี่ยนแปลงสภาพภูมิอากาศจากกระบวนการผลิต ของอุตสาหกรรมเหมืองแร่
(1) กรณีศึกษาในประเทศไทยจากข้อมูลบัญชีการปล่อยก๊าซเรือนกระจกจากภาคอุตสาหกรรมของประเทศไทย ในปี พ.ศ. 2543 พบว่ากลุ่มผลิตภัณฑ์ผลิตแร้ได้แก่ อุตสาหกรรมปูนซีเมนต์เป็นกลุ่มที่มีสัดส่วนการปล่อยก๊าซเรือนกระจก มากที่สุด (ร้อยละ 98) รองลงมา ได้แก่ กลุ่มอุตสาหกรรมเคมี (ร้อยละ 2) และกลุ่มการผลิตโลหะ (ร้อยละ 0.1) ตามลำดับ (สำนักงานนโยบายและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อม, 2553) ด้วยเหตุนี้ หน่วยงานภาครัฐ ภาคการ ศึกษาและเอกชนที่เกี่ยวข้องจึงได้ทำการศึกษาพัฒนาองค์ความรู้และสร้างแนวปฏิบัติที่ดีในการบรรเทาผลกระทบด้านการ เปลี่ยนแปลงสภาพภูมิอากาศจากกระบวนการผลิตของอุตสาหกรรมเหมืองแร่ของประเทศไทย อาศัยหลักการประเมินวัฏจักร

ชีวิตของผลิตภัณฑ์ต่างๆ ในการพัฒนาเครื่องหมายฉลากคาร์บอน การประเมินปริมาณการปล่อยก๊าซเรือนกระจกและ วิเคราะห์ความเป็นไปได้ในการดำเนินโครงการการพัฒนาที่สะอาด (Clean Development Mechanism: CDM) ดังต่อไปนี้

การพัฒนาเครื่องหมายฉลากคาร์บอน
ฉลากคาร์บอนคือเครื่องหมายที่แสดงว่าผลิตภัณฑ์นั้นๆ ได้ผ่านการประเมินคาร์บอนฟุตปรินท์ตลอดวัฏจักรชีวิต ของผลิตภัณฑ์ตั้งแต่กระบวนการผลิตเริ่มต้นจนถึงจุดสิ้นสุด (รูปที่ 2 ก) และสามารถลดการปลดปล่อยก๊าซเรือนกระจก ของผลิตภัณฑ์ได้ตามเกณฑ์ที่กำหนดไว้ (รูปที่ 2 ข) โดยประเมินจากการเปรียบเทียบปริมาณคาร์บอนฟุตปรินท์ในปีปัจจุบัน กับปีฐาน ทั้งนี้ ประเทศไทยนับเป็นประเทศแรกในกลุ่ม ASEAN ที่ส่งเสริมการติดฉลากคาร์บอนบนผลิตภัณฑ์ โดยพิจารณา ข้อมูลผลิตภัณฑ์ที่ได้รับฉลากลดคาร์บอน พบว่าผลิตภัณฑ์ที่ได้รับการอนุมัติให้ใช้เครื่องหมายคาร์บอนฟุตปรินท์มีจำนวน ทั้งหมด 458 ผลิตภัณฑ์ จาก 100 บริษัท (สืบค้นข้อมูล ณ วันที่ 1 กุมภาพันธ์ 2555 ; อบก., 2555) ในจำนวนนี้ มีบริษัท ที่เกี่ยวข้องกับการนำวัตถุดิบจากภาคอุตสาหกรรมพื้นฐานและการเหมืองแร่มาผลิตเป็นผลิตภัณฑ์ทั้งสิ้น 23 ผลิตภัณฑ์ (ได้แก่ผลิตภัณฑ์กระเบื้องเซรามิค ผลิตภัณฑ์กระเบื้องแกรนิต ผลิตภัณฑ์แก้วเซรามิค ผลิตภัณฑ์แผ่นเหล็กรีดร้อน ผลิตภัณฑ์ ปูนซีเมนต์และผลิตภัณฑ์ยิปซัมทนไฟ เป็นต้น) ซึ่งคิดเป็นร้อยละ 5 ของผลิตภัณฑ์ทั้งหมดที่ได้รับการรับรองฉลาก ลดคาร์บอน (องค์การบริหารจัดการก๊าซเรือนกระจก, 2557)

(ก)

(ข)

รูปที่ 2 เครื่องหมายฉลากคาร์บอนของผลิตภัณฑ์ (ก) และ ฉลากลดคาร์บอนฟุตปรินท์ (ข) ที่มา: องค์การบริหารจัดการก๊าซเรือนกระจก (2557)

การประเมินปริมาณก๊าซเรือนกระจกจากกระบวนการผลิตอุตสาหกรรมเหมืองแร่

การประเมินปริมาณการปล่อยก๊าซเรือนกระจกขององค์กร/ผลิตภัณฑ์หรือคาร์บอนฟุตปรินท์ในประเทศไทยนั้น อ้างอิงจากมาตรฐาน ISO $14064-1$ (2006) และ ISO 14025 (2006) ซึ่งพัฒนาโดยองค์การบริหารจัดการก๊าซเรือนกระจก อาศัยหลักการ ก) กำหนดขอบเขตขององค์กร ข) กำหนดขอบเขตการดำเนินงาน โดยระบุกิจกรรมที่มีการปล่อยและ ดูดกลับก๊าซเรือนกระจก ค) คำนวณปริมาณการปล่อยและดูดกลับก๊าซเรือนกระจกทั้งนี้ สำนักบริหารสิ่งแวดล้อม กรมอุตสาหกรรมพื้นฐานและการเหมืองแร่ว่วมกับสถาบันการศึกษาที่เกี่ยวข้อง ได้ทำการศึกษาถึงแนวทางบริหารจัดการ ทรัพยากรสิ่งแวดล้อมเพื่อลดการปลดปล่อยก๊าซเรือนกระจกจากอุตสาหกรรมเหมืองแร่ไนประเทศไทยโดยครอบคลุม การประเมินวัฏจักรชีวิตและการปล่อยก๊าซเรือนกระจกจากอุตสาหกรรมแร่ต่างๆ ดังนี้

- อุตสาหกรรมเหมืองแร่ทองคำ
- อุตสาหกรรมเหมืองหินปูน
- อุตสาหกรรมเหมืองถ่านหิน
- อุตสาหกรรมเหมืองแร่โดโลไมต์
- อุตสาหกรรมเหมืองแร่ทรายแก้ว
- อุตสาหกรรมประเภทโลหกรรมเหล็์ก
- อุตสาหกรรมประเภทโรงโม่ บดและย่อยหิน
- อุตสาหกรรมหินเพื่อการก่อสร้าง

จากการศึกษาดังกล่วว ยังนำไปสู่กรวิเคระะ์ห์งคความเป็นไปไได้ในการนำหลักการประเมินวัฎักกรชีวิตมาประมวล ศักยภาพในการลคการปล่อยก๊าซเรือนกระจกซึ่งพบว่าอุตสาหกรรมเหมืองแร่บงชนิดเช่นอุตสาหกรรมเหมืองลิกไนต์ เหมืองทองคำและเหมืองหินปูน เป็นอุตสาหกรรมที่มีกักยภาพและความเป็นไปได้ในการดำเนินโครงการ $\mathbf{C D M}$
 ความยั่งืนืนของโครงการ ขั้นตอนการตรวจสอบ/การขึ้นทะเปียน รวมถึงความคุ้มค่าในการขายคาร์บอนเครดิตที่ได้จกกโครงการ ควบตู่ไปด้วย (กรมอุตสาหกรรมพื้นฐานและการเหมืองแร่และคณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่, 2553; กรมอุตสหกกรมมืื้นฐานและการเหมืองแร่, 2555) นอกจากนี้ Nekapreecha (2011) ยังได้ทำการประเมินการปล่อย ก๊าชเรือนกระจกจากกระบวนการผลิตของอุตสาหกรรมปิโตรเคมี่ในประเทศไไยในปี พ.ศ. 2551 ซึ่งได้กำหนดขอบเขต การประเมินออกเป็น 2 ขอบเขตได้แก่ กิจกรรมการใช้พลังานประกอบด้วยการใช้เชื้อเพลิง ไฟฟ้าและพลังงาน้อน้ำและ กระบวนการผลิตได้แก่กิกกรรมการเผาใหม้เชื้อเพลิง ผลการศึกษาพบว่าปริมาณการปล่อยก้าชเรือนกระจกของอุตสาหกรรม ปิโตตเคมีมีค่าเท่กกับ 11 ตันคร์บอนไดออกไซด์เทียบเท่าและค่าความเข้มข้นของปริมาณก๊าซเรือนกระจกมีค่าเท่ากับ 0.63 กิโลกรัมคาร์บอนไดออกไซต์เทียบเท่าต่อตันการผลิต
(2) กรณีศึกษาในต่างประเทศ
(ก) ประเทศสทรัฐูอเมริกา
ศูนย์ศึกษบข้อมูลก๊าชซกรรบอนไดออกไใซต์และการเปลี่ยนแปลงของโลก (Center for the Study of Carbon Dioxide and Global Change) ของประเทศสหรัฐอเมริกาได้ทำกรรศึกษาเกี่ยวกับสถานการณ์และแนวใน้มการปล่อย ก๊าชเรือนกระจก รวมถึงการดำเนินงนเพื่อลดปริมาณการปส่อยกาาชเรือนกระจกสู่ชั้นบรรยากาศจกกกิกกรรมในอุตสหกรรม เหมืองแร่ โดยเสนอแนวทางเลือกแก่ผู้ประกอบการอุตสาหกรรมเหมืองแร่และหน่วยงานที่เกี่ยวข้องนำไปไฏิบัติ เพื่อบรรเทา ปัญหาสภาพภูมิอากาศที่เปลี่ยนแปลง (Idso and Wootten, 2003) โดยกาเพิ่มประสิทธิภาพการใช้พลังงนนเละลดปริมาณ
 จากกระบวนการผลิต รวมถึงการสะสมหรือกักเก็บการ์บอน (Carbon sequestration) หรือกระบวนการเปลี่ยนแปลงงูปป ก๊าพซการ์บอนไดออกไซตด์ที่อยู่ในชั้นบรรยากาศมากักเก็ทไว้ในเหล่งกักเก็บที่เหมาะสม ได้แก่การเพิ่มพื้นที่สีเขียวในบริเวณ โครงการ เป็นต้น นอกจากนี้ Sterling (2009) ศึกยาปริมาณการใช้เชื้อเพลิงในกระบวนการเหมืองแเร่และกระบวนการ ผลิตในเหมืองถ่านหิน เหมืองแร่ และเหมืองโลนะ ประเทศสหรัฐอเมริกา ซึ่งกระบวนการเหมืองแร่สมมารณแบ่งได้ออก เป็น 2 ส่วน คือ การสกัด ได้แก่ กระบวนกางขุด/เจะะ กระบวนการระเบิด และกระบวนการชะล้าง อีกส่วน คือ การขนส่ง วัตตุดิบได้แก่ การใช้เชื้อเพลิงชนิดดีเซล และการใช้ไฟฟ้า สำหรับกระบวนการผลิตประกอบด้วย กระบวนการบด กระบวน การบดละเอียด และกระบวนการกัดแยก ผลการศึกษาพบว่าการใช้พลังงานสำหรับกระบวนการบดละเอียดของเหมือง ถ่านหินและเหมืองโลหะ มีปริมาณการใช้ชื้อเพลิงที่สูงสุดขณะที่กระบวนการระเบิดมีปริมาณการใช้เชื้อเพลิงน้อยที่สุด ตามลำดับ
(ข) ประเทศในกลุ่มสหภาพยุโรป
คณะกรรมาธิการยุโรูได้มีกีารวางกรอบการทำงานและแผนงานเพื่อนำไปสู่ารพัมนนที่ทั่ยยืน โดย้ได้คึกษาและเสนอ แนวทงปฏิบัติที่ดีสำหรับการดำเนินงานลดปริมาณกิาซเรือนกระจกสำหรับอุตสาหกรรมเหมืองแร่ (Adey et al., 2011) ได้แก่ การประเมินวัฏัักรชีวิิต (LCA) ตลอดขั้นตอนการผลิต อาทิเช่นการประเมินวัฏักกรชีวิตกระบวนการผลิตโลหะ

ทองแดงทั้งจากแหล่งปฐฐมภูมิและทุติยภูมิการถลุงแร่ประเภทซัลไฟด์ ตะกั่ว สังกะสี ทองคำ การผลิตแร่อลูมิเนียม และ ยูเรเนียมเป็นต้นการใช้พลังงานสะอาดในอุตสาหกรรมและกระบวนการผลิตแร่ เช่น พลังงานลม พลังงานแสงอาทิตย์ ทั้งในรูปพลังงานไฟฟ้า (Photovoltaic ; PV) และ พลังงานความร้อน (Concentrating Solar Power ;CSP) พลังงานน้ำ พลังงานชีวมวลและไบโอดีเซล การใช้ก๊าซธรรมชาติเป็นเชื้อเพลิงในอุตสาหกรรมและกระบวนการผลิตแร่ เพื่อลดปริมาณการปล่อยก๊าซเรือนกระจก หรือการใช้เครื่องกำเนิดไฟฟ้าแบบ Organic Rankine Cycle หรือ ORC (เป็นการผลิตกระแสไฟฟ้าโดยใช้หลักการเดียวกับเครื่องกังหันไอน้ำ หรือ steam turbine แต่ต่างกันตรงที่ใช้สารอินทรีย์ เหลวที่มีจุดเดือดต่ำแต่มีความดันไอสูงแทนการใช้น้ำ)

นอกจากนี้ Worrell และคณะ (2001) ได้ทำการประเมินปริมาณการปล่อยก๊าซเรือนกระจกของอุตสาหกรรม ปูนซีเมนต์ทั่วโลกในปี พ.ศ. 2537 อันเกิดจากกระบวนการผลิตได้แก่ กระบวนการบดหินปูน (Calcination) กระบวน การเผาไหม้ และการใช้ไฟฟ้า ผลการศึกษาพบว่าปริมาณการปล่อยก๊าซเรือนกระจกจากอุตสาหกรรมปูนซีเมนต์ทั่วโลก มีค่าเท่ากับ 307 ตันคาร์บอนไดออกไซด์เทียบเท่าโดยกระบวนการบดหินปูนและการเผาไหม้เป็นกิจกรรมที่ปล่อยก๊าซ เรือนกระจกมากที่สุด เมื่อเทียบกับกิจกรรมอื่น นอกจากนี้ Norgate และ Haque (2010) ยังได้ทำการประเมินปริมาณ การปล่อยก๊าซเรือนกระจกที่เกิดจากการทำเหมืองแร่และกระบวนการผลิตแร่เหล็ก แร่บ็อกไซด์และแร่ทองแดงในประเทศ ออสเตรเลียด้วยการประเมินวัฏจักรชีวิต โดยผลการประเมินพบว่ากระบวนการขนส่ง (Loading and hauling) เป็นกระบวน การผลิตที่ปล่อยก๊าซเรือนกระจกสู่ชั้นบรรยากาศมากกว่ากระบวนการผลิตอื่น

การประเมินวัฏจักรชีวิตของกระบวนการบำบัดน้ำเสียจากระบบการผลิตของอุตสาหกรรมเหมืองแร่

อุตสาหกรรมเหมืองแร่มีความจำเป็นต้องใช้น้ำในหลายกระบวนการเพื่อแปลงกองหินให้กลายเป็นแร่ที่มีมูลค่า กระบวนการเหล่านั้นอาจ ได้แก่ การใช้น้ำเพื่อบดตัด คัดแยก ล้าง หรือลอยแร่ การใช้น้ำเพื่อกระบวนการทางเคมี เช่น การสกัด โลหะ การชะละลาย เป็นต้น รูปที่ 3 แสดงระบบการผลิตทั้งหมดของการสกัดแร่เหล็กในเหมืองผิวดินที่ใช้การพิจารณาตั้งแต่ ขั้นตอนการได้มาซึ่งวัตถุดิบ การขนส่งวัตถุดิบมายังโรงงานจนถึงกระบวนการผลิตเพื่อให้ได้หัวแร่ 1 ตัน (Ferreira และ Leite, 2015) จะเห็นได้ว่านอกจากจะมีการใช้ที่ดิน ซึ่งเป็นทรัพยากรธรรมชาติมาเป็นวัตถุดิบในการผลิตแร่เหล็กแล้ว ยังมีการใช้น้ำ เป็นทรัพยากรที่สำคัญในระบบการผลิตแร่เหล็กด้วย

รูปที่ 3 ระบบการผลิตแร่เหล็ก (Ferreira และLeite, 2015)

องค์การสำรวจทางธรณีวิทยาสหรัฐอเมริกา (The United States Geological Survey; USGS) รายงานการใช้น้ำ ในระบบการผลิตแร่ของเหมืองทั้งหมดในสหรัฐอเมริกาในปี พ.ศ. 2548 มีการใช้น้ำประมาณ 15,255 ล้านลิตรต่อวัน ซึ่งแบ่ง ตามประเภทและแหล่งน้ำดังแสดงในตารางที่ 1 (USGS, 2016) ปริมาณการใช้น้ำดังกล่าวนับเป็นร้อยละ 1 เมื่อเทียบกับ การใช้น้ำในทุกกิจกรรมทั่วประเทศ อย่างไรก็ตามน้ำที่ผ่านการใช้ในระบบการผลิตแร่ท้ายที่สุดจะกลายเป็นน้ำเสียที่ปนเปื้อน สรอันตรยที่จำเป็นต้องมีการจัดการที่ดีเพื่อไม่ให้เกิดผลกระทบต่อสิ่งแวดล้อมในภายหลัง

ตารางที่ 1 ปริมาณการใช้น้ำในระบบการผลิตแร่ของ ประเทศสหรัฐอเมริกใในีี พ.ศ. 2548 (USGS, 2016)

แหล่งน้ำ	ปริมาณน้ำที่ใช้ (ล้านลิตรต่อวัน)		
	น้ำจืด	น้ำเค็ม	รวม
น้ำผิวดิน	4,921	719	5,640
น้ำใต้ดิน	3,861	5,754	9,615
รวม	8,782	6,473	15,255

รูปที่ 4 เขื่อนกั้นน้ำหางแร่ของเหมืองมาร์ธา ประเทศนิวซีแลนด์ (Joy, 2010)

น้ำที่ผ่านการใช้งานและกลายเป็นน้ำสสียมักถูกนำมากักเก็บในเขื่อนที่สร้างขึ้นเพื่อให้หางแร่ เศษหิน และของเสียอื่นๆ เกิดการตกตะกอนก่อนที่จะนำมาบำบัด เนื่องจากน้ำเสียจากเหมืองโดยทั่วไปจะมีกำมะถันปริมาณสูงและสามารถทำปฏิกิริยา กับออกซิเจนในอากาศ ทำให้เกิดความเป็นกรด ดังนั้นการกักเก็บน้ำเสียที่มีกำมะถันเจือปน จึงเป็นการช่วยลดการสัมผัสกับ อากาศและสิ่งแวดล้อม นอกจากนี้น้ำเสียยังมีสินแร่ที่มีค่าเจือปนอยู่และสามารถนำกลับเข้ากระบวนการได้ไดยอาศัยเทคโนโลยี การทำให้เข้มข้นขึ้น รูปที่ 4 แสดงตัวอย่างการสร้างเขื่อนกั้นน้ำหางแร่เพื่อป้องกันไม่ให้มีการปลดปล่อยกรดกำมะถันออกสู่ สิ่งแวดล้อมโดยรอบของเหมืองมาร์ธาประเทศนิวซีแลนด์ (Joy, 2010)

การศึกษาการประเมินวัฏจักรชีวิตของกระบวนการบำบัดน้ำเสียจากระบบการผลิตของอุตสาหกรรมเหมืองแร่ ได้ดำเนินการ เพื่อวางแผนการจัดการและบำบัดน้ำเสียที่ส่งผลกระทบต่อสิ่งแวดล้อมน้อยที่สุดและให้ประสิทธิภาพการบำบัด ที่สูงขึ้น ในปี พ.ศ. 2551 Tuazon และ Corder ได้ศึกษาเปรียบเทียบการบำบัดน้ำทิ้งฤทธิ์กรด (Acid mine drainage; AMD) โดยใช้โคลนแดง ที่ปรับสภาพให้เป็นกลางด้วยน้ำทะเลกับการใช้ปูนขาวซึ่งเป็นวิธีที่ใช้กันทั่วไป โดยติดตาม การใช้พลังงานเชื้อเพลิง และระดับการปลดปล่อยคาร์บอนไดออกไซด์ในกระบวนการบำบัดน้ำทิ้งฤทธิ์กรดทั้งสองวิธี การศึกษานี้ทำขึ้นที่เหมืองเมาท์มอร์แกน ในควีนส์แลนด์ ประเทศออสเตรเลีย โดยขอบเขตการศึกษาใด้แก่ขั้นตอนการเตรียม โคลนแดงและปูนขาวมาใช้ ซึ่งอยู่ห่างออกไปจากแหล่งบำบัด 150 กิโลเมตร ผลการประเมินวัฏจักรชีวิตแสดงในตาราง ที่ 2 พบว่า ณ ประสิทธิภาพการบำบัดน้ำทิ้งฤทธิ์กรดที่เท่ากัน ปูนขาวถูกใช้ในปริมาณที่น้อยกว่าโคลนแดง แต่การใช้ ปูนขาวกลับส่งผลต่อการปลดปล่อยก๊าซคาร์บอนไดออกไซด์สูงกว่ามาก ซึ่งมาจากขั้นตอนการเผาปูนในกระบวนผลิต ปูนขาวเป็นหลัก ส่วนการปลดปล่อยก๊าซคาร์บอนไดออกไซด์ที่เกิดจากโคลนแดงมาจากการขนส่งเป็นหลัก ดังแสดง รายละเอียดในรูปที่ 5 ผลการประเมินวัฏจักรชีวิตของการศึกษานี้ระบุว่าการใช้โคลนแดงในการบำบัดน้ำทิ้งฤทธิ์กรด ปลดปล่อยก๊าซคาร์บอนไดออกไซด์ ร้อยละ 20 และใช้ไฟฟ้า ร้อยละ 44 เมื่อเปรียบเทียบกับการใช้ปูนขาวตลอด ทั้งกระบวนการ นอกจากนี้ยังเป็นแนวทางในการนำของเสียอย่างโคลนแดงมาใช้ประโยชน์ได้อีกทางหนึ่ง

ตารางที่ 2 ผลการประเมินวัฏจักรชีวิตของกระบวนการบำบัดน้ำทิ้งฤทธิ์กรดของเหมืองเมาท์มอร์แกน ในควีนส์แลนด์ ประเทศออสเตรเลีย (โคลนแดง 1 ตัน เท่ากับการใช้ปูนขาว 0.2 ตัน) (Tuazon และ Corder, 2008)

แผนการบำบัด	ปริมาณที่ใช้ (kg)	บัญชีรายการวมจักรชีวิต		
		ใดออกไๆ	ไฟฟ้า (kWh)	เชื้อเพลิง (L)
ขอบเขต : โคลนแดงจากเขื่อนกักเก็บ				
ปูนขาว	3,300	4,378	377	16
โคลนแดง	22,297	853	164	190
ขอบเขต : โคลนแดงจากเหมืองแร่อะลูมิเนียม				
ปูนขาว	3,300	4,378	377	16
โคลนแดง	22,927	1,088	173	195

รูปที่ 5 ปริมาณคาร์บอนไดออกไซด์ที่เกิดขึ้นจากวัฏจักรชีวิตของปูนขาว (ซ้าย) และโคลนแดง (ขวา)
(Tuazon และ Corder, 2008)

บทสรุป: อุปสรรคและความท้าทาย

สืบเนื่องจากผลกระทบของปัญหาสิ่งแวดล้อมโดยเฉพาะการเปลี่ยนแปลงสภาพภูมิอากาศและภัยพิบัติทางธรรมชาติ ที่ทวีความรุนแรงมากขึ้น ส่งผลให้ทุกภาคส่วนในสังคมเริ่มตระหนักถึงความสำคัญของการแสวงหามาตรการหรือแนวทาง ในการบรรเทาและแก้ไขปัญหาอย่างเต็มกำลังทั้งในระดับชาติและสากล สำหรับประเทศไทยเองยังได้แสดงเจตจำนง และให้ความสำคัญในการดำเนินงานลดการปล่อยก๊าซเรือนกระจกตามความเหมาะสมของแต่ละประเทศโดยมุ่งเน้น ความสมัครใจในลดการปล่อยก๊าซเรือนกระจก ทั้งนี้ ภาคอุตสาหกรรมเองก็นับเป็นภาคส่วนที่สำคัญของประเทศที่สามารถ ให้ความร่วมมือในการลดก๊าซเรือนกระจกจากกระบวนการผลิตที่เกี่ยวข้องได้ปัจจุบัน การดำเนินงานภายใต้ความร่วมมือ ระหว่างภาครัฐ หน่วยงานที่เกี่ยวข้องและผู้ประกอบการอุตสาหกรรมเหมืองแร้ได้ประยุกต์ไช้หลักการประเมินวัฏจักรชีวิต เป็นเครื่องมือจัดการเพื่อทำให้ทราบถึงผลกระทบสิ่งแวดล้อมในรูปแบบต่างๆ รวมถึงปัญหาการเปลี่ยนแปลงสภาพภูมิอากาศ อันเกิดจากการเพิ่มขึ้นของปริมาณก๊าซเรือนกระจกในรูปแบบต่างๆ ได้แก่ การพัฒนาเครื่องหมายฉลากคาร์บอนหรือกลไก

ที่เป็นมิตรต่อสิ่งแวดล้อมผ่านการแสดงเจตนารมณ์รับผิดชอบต่อสังคมในรูปแบบของการให้ข้อมูลการปลดปล่อยก๊าซ เรือนกระจกที่ชัดเจนประกอบการตัดสินใจของผู้บริโภค การประเมินปริมาณก๊าซเรือนกระจกและวิเคราะห์ความเป็นไปได้ ในการดำเนินโครงการกลไกพัตนาที่สะอาดจากกระบวนการผลิตอุตสาหกรรมเหมืองแร่ อย่างไรก็ตาม การประยุกต์ใช้หลัก การประเมินวัฏจักรชีวิตสำหรับวิเคราะห์ผลกระทบสิ่งแวดล้อมอันเกิดจากกระบวนการผลิตอุตสาหกรรมเหมืองแร่ ยังมีอุปสรรค และความท้าทายในหลายประเด็น ดังนี้

- ขาดฐานข้อมูลและข้อจำกัดทางองค์ความรู้เกี่ยวกับหลักการประเมินวัฏจักรชีวิตผลิตภัณฑ์และบริการของผู้ประกอบ การอุตสาหกรรมเหมืองแร่
- ขาดแคลนบุคลากรผู้มีความรู้ ความเชี่ยวชาญ และมีประสบการณ์คอยให้คำปรึกษาเชิงเทคนิคแก่ผู้ประกอบการ อุตสาหกรรมเหมืองแร่ รวมถึงบุคลากรที่มีความชำนาญในการประเมินโครงการลดก๊าซเรือนกระจกในลักษณะที่ ตรวจสอบได้ รายงานได้และทวนสอบได้ (MRVs)
- ความตระหนักและการรับรู้ในหลักการดำเนินงานลดผลกระทบสิ่งแวดล้อมและลดการปล่อยก๊าซเรือนกระจกของ ผู้ประกอบการยังมีอยู่อย่างจำกัด
- ขาดความชัดเจนเกี่ยวกับกลไกตลาดคาร์บอนหรือระบบการซื้อ-ขายคาร์บอนเครดิต ทั้งในประเทศและต่างประเทศ รามทั้ง

ทั้งการขาดแรงจูงจากผู้ประกอบการอุตสาหกรรมในการดำเนินโครงการๆ

- ขาดความเชื่อมโยงและองค์ความรู้เกี่ยวกับการนำเครื่องมือที่เหมาะสมมาใช้ในการบริหารจัดการและบรรเทาปัญหา สิ่งแวดล้อม (ทั้งปัญหามลพิษทางน้ำและการปล่อยก๊าซเรือนกระจกจากกระบวนการผลิต) รวมถึงขาดการบูรณาการแผน งานและถ่ายทอดสู่แนวทางปฏิบัติอย่างเหมาะสม

กิตติกรรมประกาศ

ขอขอบคุณสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) และสำนักพัฒนาบัณฑิตศึกษาและวิจัยด้านวิทยาศาสตร์ และเทคโนโลยี (สบว.) สำหรับทุนอุดหนุนการวิจัยภายใต้โปรแกรมวิจัย เรื่อง การจัดการสารพิษในอุตสาหกรรม เหมืองแร่ พร้อมทั้งขอขอบคุณ สถาบันวิจัยสภาวะแวดล้อม และศูนย์ความเป็นเลิศด้านการจัดการสารและของเสียอันตราย (ศสอ.) จุฬาลงกรณ์มหาวิทยาลัย ที่ได้อำนวยความสะดวกและสนับสนุนในด้านเครื่องมือวิทยาศาสตร์และองค์ความรู้ อันเป็นประโยชน์ต่อความสำเร็จของการดำเนินงานวิจัยในครั้งนี้

เอกสารอ้างอิง

Adey, E., Wall, F., Shail, R., Keech, J., Neal, W., Limprasert, R., Roba, C., and Delmore, C. 2011. Best Practice for Reducing the Carbon Footprint of the Mining Industry. Budapest: Geonardo Ltd., 103 pp .

Ferreira, H. and Leite, M.G.P. 2015.A Life cycle assessment study of iron ore mining.Journal of Cleaner Production. 108, 1081-1091.

Idso, C., and Wootten, J. 2003. Greenhouse gas reductions in the mining sector: Historic trends and future option, Second Annual Conference on Carbon Sequestration. [ออนไลน์] แหล่งที่มา: http:// www.netl.doe.gov/publications/proceedings/03/carbon-seq/pdfs/103.pdf

Joy, M. 2010. An acid trip for NZ rivers. [ออนไลน์] แหล่งที่มา: http://blog.forestandbird.org.nz/ an-acid-trip-for-nz-rivers/[8 มิถุนายน 2559]

Nekapreecha, N. Carbon emissions management of the Petrochamical Industries in Thailand.Master's Thesis, Department of Earth Science, Durham University, 2012.

Norgate, T. and Haque, N. 2010. Energy and greenhouse gas impacts of mining and mineral processing operations. Journal of Cleaner Production, 18:266-274.

Sterling, D. 2009. Identifying opportunities to reduce the consumption of energy across mining and processing plants.Schneider-Electric.Ferreira, H. and Leite, M.G.P. 2015.A Life cycle assessment study of iron ore mining.Journal of Cleaner Production. 108, 1081-1091.

Tuazon, D. andCorder, G.D. 2008. Life cycle assessment of seawater neutralised red mud for treatment of acid mine drainage. Resources, Conservation and Recycling. 52, 1307-1314.

United Nations Environment Program (2016) Life Cycle Assessment.[ออนไลน์] แหล่งที่มา: http:// www.unep.org/resourceefficiency/Consumption/StandardsandLabels/MeasuringSustainability/ LifeCycleAssessment/tabid/101348/Default.aspx

USGS. 2016. Mining water use. [ออนไลน์] แหล่งที่มา: http://water.usgs.gov/edu/wumi.html [8 มิถุนายน 2559]

Worrel, E., Price, L. Martin, N., Hendriks, C. and Meida, L.O. 2001. Carbon dioxide emissions from global cement industry. Annual review of environmental and resources, 26: 303-329.

กรมอุตสาหกรรมพื้นฐานและการเหมืองแร่ (กพร.). 2555. รายงานฉบับสมบูรณ์ โครงการพัฒนาอุตสาหกรรมเหมืองแร่ สู่โครงการกลไกการพัฒนาที่สะอาด (CDM) (ปีงบประมาณ 2555). กระทรวงอุตสาหกรรม. กรุงเทพฯ.

กรมอุตสาหกรรมพื้นฐานและการเหมืองแร่และคณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่. 2553. รายงานโครงการกำหนด แนวทางการพัฒนาอุตสาหกรรมเหมืองแร่สู่กลไกการพัฒนาที่สะอาด (CDM). กระทรวงอุตสาหกรรม. กรุงเทพฮ.

จันทิมา อุทะกะ. 2559. ศูนย์เฉพาะทางด้านการประเมินวัฏจักรชีวิตและพัฒนาผลิตภัณฑ์เชิงนิเวศเศรษฐิกิจ. ศูนย์เทคโนโลยี โลหะและวัสดุแห่งชาติ (MTEC) [ออนไลน์] แหล่งที่มา: http://www2.mtec.or.th/website/doc_sys/upload/ 5_basic_LCA.pdf

สำนักงานนโยบายและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อม.2553.รายงานฉบับสมบูรณ์การจัดทำบัญชีก๊าซเรือนกระจก ของประเทศไทย. กรุงเทพศ. 143 หน้า.

องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน). 2557. ฉลากคาร์บอนและคาร์บอนฟุตพริ้นท์ของผลิตภัณฑ์ [ออนไลน์] แหล่งที่มา: http://thaicarbonlabel.tgo.or.th/carbonfootprint/

[^0]: * สถาบันวิจัยสภาวะแวดล้อม จุพาลงกรณ์มหาวิทยาลัย
 * ศูนย์ความเป็นเลิศด้านการจัดการสารและของเสียอันตราย จุฬาลงกรณ์มหาวิทยาลัย

