PARTICLE pallution : ฮumsายnว่ากี่ลิด

ธีรพล คังคะเกตุ *

Abstract

สมัยก่อนปัญหามลพิษเป็นปัญหาภายในของแต่ละประเทศที่ทุกประเทศจะต้องหาทางป้องกัน แก้ไขเพื่อไม่ให้เกิดผลเสี่ยต่อประเทศของตน ทุกประเทศจึงให้ความสำคัญและสนใจ แต่เฉพาะในการ ที่จะแก้ไขปัญหาของตนด้วยวิธีการต่างๆ เช่น การออกกฎหมายและมาตรฐานในการควบถุมมลพิษ เป็นต้น แล้วก็เป็นเช่นนี้ตลอดมาจนถึงปัจจุบันนับตั้งแต่โลกได้ตระหนักถึงพิษภัยของมลพิษ ไม่ว่าจะ เป็นทางน้ำ อากาศหรือมลพิษจากขยะทั้งชุมชนและอุตสาหกรรมในปัจจุบันอาจกล่าวได้ว่าปัญหา สิ่งแวดล้อมที่โลกได้ตระหนักว่าเป็นปัญหาร่วมที่ทุกประเทศในโลก ต้องมีส่วนร่วมและพร้อมใจกัน จัดการก์คือ ปัญหาโลกร้อน ที่เกิดจากการใช้เชื้อเพลิงฟอสซิลนั่นเอง แต่ที่จริงแล้วปัญหามลพิษเป็น ปัญหาสิ่งแวดล้อมที่ทั้งโลกหรือภูมิภาคต้องร่วมใจกันเพราะว่าปัญหาสิ่งแวดล้อมไม่ใช่เป็นปัญหาเฉพาะ ของแต่ละที่แต่ละแห่งแต่เพียงอย่างเดียว แต่ในหลายๆ กรณีได้ส่งผลกระทบอย่างกว้างขวางออกไป จากแหล่งกำเนิด (นอกเหนือจากปัญหาโลกร้อน) ดังเช่น การทิ้งขยะหรื้อของเสียต่างลงในมหาสมุทธ (โดยเฉพาะพลาสติก) ปัญหาการแพร่กระจายของโลหะเป็นพิษ เช่น ปรอทในห่วงโซ่อาหารในมหาสมุทธ เป็นต้น

ในระยะแรกๆ ของการเกิดปัญหามลพิษทางอากาศนั้นปัญหาส่วนใหญ่มาจากการใช้ถ่านหินในโรงงานอุตสาหกรรม และสารมลพิษทางอากาศที่เป็นปัญหาในขณะนั้นมุ่งความสนใจไปที่ $S O_{2}$ และ สารแขวนลอยในอากาศ (ต่อไปในบทความ จะสื่อถีงโดยใช้คำว่า "ฝุ่น" หรือตัวย่อว่า " $P M$ " ในความหมายเดี้ยวกัน) ซี่งส่วนใหญู่เกิดจากการใช้ถ่านหินเป็น เชื้อเพลิงในอุตสาหกรรม PM เป็นหนึ่งในสารมลพิษทางอากาศที่มีการเปลี่ยนแปลงมาโดยตลอดตั้งแต่การกำหนดรูปแบบ และความเข้มข้นในมาตรฐานตลอดไปถึงวิธีการตรวจวัดเนื่องจากมีงานวิจัยที่บ่งชี้ถึงอันตรายของมันต่อสุขภาพของมนุษย์ อันส่งผลต่อการเป็นสาเหตุของความเจ็บป่วยและการตายของมนุษย์ค่อนข้างกว้างขวางเมื่อเทียบกับมลพิษทางอากาศอื่นๆ ดังนั้นมาตรฐานคุณภาพอากาศจึงได้กำหนดค่า PM ไว้มาโดยตลอดและทุกครั้งที่มีการปรับทบทวนมาตรฐานคุณภาพอากาศ PM ก็ถูกปรับให้มีความเข้มงวดมากขึ้นทุกครั้ง รวมทั้งในช่วงไม่กี่ปีที่ผ่านมาจนถีงปัจุบันก็ยิ่งเห็นได้ว่า PM ได้รับความ สนใจมากขึ้นและถูกใช้เป็นตัวบ่งชี้ที่สำคัญในการติดตามถึงสถานะความรุนแรงของการเกิดภาวะมลพิษทางอากาศ

สรระทั่วไปของ PM

PM เป็นคำย่อของ particle matter หรือ particulate matter (ภาษาทั่วไปก็ใช้คำว่า dust) ในความหมาย ทางวิชาการหมายถึงสสารที่มีสถานะเป็นของแข็งและหรือของเหลว (และแน่นอนว่าไม่ใช่ก๊าซ) ที่แขวนลอยอยู่ในอากาศ สสารดังกล่าวอาจเป็นสารอินทรีย์หรือสารอนินทรีย์ก็ได้ เป็นสารอินทรีย์จากสิ่งมีชีวิต (เช่น ละอองเกสร สปอร์เชื้อรา เป็นต้น) หรือสารอินทรีย์สังเคราะห์ (เช่น สารปราบศัตรูพืช) ก็ได้ สารอนินทรีย์จากธรรมชาติ (เช่น ฝุ่นจากดินทราย ไอเกลือทะเล เป็นต้น) หรือจากกิจกรรมมนุษย์ (เช่น ฝุ่นจากการก่อสร้าง ฝุ่นจากการเผาไหม้ เป็นต้น) อาจมีพิษหรือไม่ มีพิษก็ได้ ประการสำคัญคือ ขนาดของ $P M$ เพราะนอกจากจะเป็นปัจััยสำคัญต่ออายุของ PM (หมายถึงระยะเวลาที่ $P M$ ค้างอยู่ในบรรยากาศ) ยังเป็นปัจจัยสำคัญต่อความเป็นไปได้หรือโอกาสของการที่ PM จะสามารถล่วงลึกเข้าไปในปอดของ มนุษย์ได้มากน้อยเพียงใด ซึ่งปัจจัยดังกล่าวมีผลอย่างมากต่อความเป็นอันตรายของ PM ดังนั้นแม้ว่าองค์ประกอบทางเคมี ของ PM จะมีผลต่อการก่ออันตรายที่ต่างกันไปก็ตาม แต่ความสามรถของ PM ที่ล่วงลึกเข้าสู่ระบบทางเดินหายใจมีความ สำคัญมากกว่า ยิ่ง PM ล่วงลึกเข้าสู่ปอดได้มากเพียงใดก็ยิ่งเพิ่มความเสี่ยงต่อการทำให้เกิดอันตรายมากขึ้นไม่ว่าจะมี องค์ประกอบทางเคมีเป็นอย่างใด PM นอกจากที่เกิดขึ้นจากแหล่งกำเนิดโดยตรงแล้ว (primary PM) ยังเกิดขึ้นได้ จากปฏิกิริยาเคมีในบรรยากาศของสารมลพิษอื่นๆ (เป็นปฏิกิริยาเคมีที่ซับซ้อนและยังไม่เป็นที่เข้าใจอย่างถ่องแท้ในปัจจุบัน) หรือเรียกว่า secondary $P M$ primary PM มีทั้งที่เกิดโดยธรรมชาติและที่เกิดจากมนุษย์ ต่างกับ secondary PM ที่ ส่วนใหญ่มีที่มาจากกิจกรรมของมนุษย์และมักเป็นฝุ่นที่มีขนาดเล็กกว่า 2.5 ไมครอน (ไมโครเมตร) ซึ่งกำลังถูกจับตามอง ว่าเป็นปัญหาสำคัญต่อสุขภาพคนเราด้วยเหตุที่ขนาดของ $P M$ ได้รับการยอมรับว่ามีความสัมพันธ์อย่างสูงต่อสุขภาพ ต่ออัตราการเจ็บป่วยและการตายของสาธารณชนดังนั้นการกำหนดมาตรฐานคุณภาพอากาศจึงมีการปรับเปลี่ยนตลอดมา จาก black smoke มาเป็น TSP (total suspended particle) PM10 (ฝุ่นขนาดไม่เกิน 10 ไมครอน) และ PM2.5 (ฝุ่นขนาดไม่เกิน 2.5 ไมครอน) ในที่สุด

การเผาไหม้เชื้อเพลิงฟอสซิลและรวมถึงชีวมวลอื่นๆ ล้วนแล้วแต่เป็นต้นกำเนิดที่สำคัญของการเพิ่มขึ้นของ PM ในบรรยากาศโดยเฉพาะอย่างยิ่ง PM2.5 โลกต้องการพลังงานอย่างไม่มีที่สิ้นสุดและแม้ว่าโลกจะได้ตระหนักถึงความเสี่ยง ของการใช้เชื้อเพลิงฟอสซิลต่อการเกิดััญหาโลกร้อนก็ตาม แต่โลกก็ยังหยุดการใช้เชื้อเพลิงฟอสซิลไม่ได้ ไม่เพียงแต่ปัญหา การเพิ่มขึ้นของก๊าซเรือนกระจกเท่านั้นการเผาไหม้เชื้อเพลิงฟอสซิลโดยเฉพาะถ่านหินยังสร้างปัญหาการเพิ่มขึ้นของ PM อีกด้วย และคล้ายคลึงกับการเพิ่มขึ้นของก๊าซคาร์บอนไดออกไซด์ $\left(\mathrm{CO}_{2}\right)$ ที่เป็นปัญหาของโลกไม่ใช่เป็นปัญหาแต่เฉพาะ ถิ่นกำเนิด ปัจจุบัน PM ไม่เพียงสร้างปัญหามลพิษทางอากาศในถิ่นกำเนิดเท่านั้นแต่สามารถแพร้ไปยังพื้นที่ห่างไกลจน อาจกลายเป็นปัญหามลพิษทางอากาศระดับโลกได้แม้ว่าจะไม่กว้างขวางเช่นเดียวกับ $\mathrm{CO}_{\mathrm{a}^{2}}$ ก็ตาม แต่ปัจจุบันก็กลายเป็น ปัญหามลพิษทางอากาศระดับภูมิภาคไปแล้วดังกรณีการแพร่กระจายของ PM จากจีนสู่ญี่ปุ่นและเกาหลีใต้จนไปถึงสหรัฐ อเมริกา หรือกรณีไฟป่าที่อินโดนิเซียที่ส่งผลต่อ มาเลเซีย สิงคโปร์และภาคใต้ของประเทศไทย

กล่ไกกรร้องกันของระบบหย่ใจของมนุษย์

ระบบหายใจเป็นระบบที่มีความสำคัญมากระบบหนึ่งของร่างกายเราและต้องทำงานอยู่ตลอดเวลาแม้ในยามหลับ ซึ่งไม่ต่างไปจากหัวใจ เนื่องจากร่างกายคนเราต้องการก๊าซออกซิเจน $\left(\mathrm{O}_{2}\right)$ อยู่ตลอดเวลาสำหรับกระบวนการเมตะบอลิ ซึมภายในร่างกาย ถ้ากล่าวในนัยยะของศาสตร์โบราณดังเช่น โยคะ หรือ ไทชิ ลมหายใจเปรียบได้ดังชีวิตหรือปราณดังว่า ถ้าขาดลมก็ขาดชีวิต ปอดและหัวใจจึงเป็นอวัยวะที่มีความสัมพันธ์ใกล้ชิดมากและถ้าปอดมีปัญหาก็มักทำให้เกิดปัญหาต่อ หัวใจได้ ร่างกายได้รับ O_{2} จากลมที่หายใจเข้าไปและปล่อยหรือระบาย CO_{2} ออกมาพร้อมกับลมหายใจออก อากาศที่เรา หายใจอยู่นี้มีประกอบด้วยก๊๊ซไนโตรเจน $\left(\mathrm{N}_{2}\right) 78 \%$ (โดยปริมาตร) $\mathrm{O}_{2} 21 \%$ (โดยปริมาตร) และที่เหลือเป็น CO_{2} และอื่นๆ ซึ่งรวมถึงฝุ่นที่มีอยู่ตามธรรมชาติ ดังกล่าวแล้วว่าฝุ่นไม่ว่าจะอยู่ในรูปแบบใดก็ตามย่อมก่อให้เกิดอันตรายต่อ ระบบหายใจ และยิ่งเล็กก็ยิ่งอันตรายเพราะยิ่งเล็กก็ยิ่งสามารถล่วงเข้าสู่ส่วนลึกของระบบหายใจหรือปอดจนถึงระดับที่มีการ แลกเปลี่ยนก๊าซ PM บางชนิด (ขึ้นกับองค์ประกอบทางเคมี) อาจเข้าสู่กระแสโลหิตได้ ดังนั้นร่างกายจึงสร้างกลไกป้องกัน ฝุ่น (สิ่งแปลกปลอม) ที่ปะปนมากับอากาศที่เราหายใจเข้าไป

ระบบหายใจของมนุษย์เริ่มต้นที่ จมูกและหลอดลมช่วงคอ จากนั้นก็แตกแขนงออกเป็นสองเส้น (bronchi) เข้าสู่ปอดข้างซ้ายและขวา แล้วก็แตกแขนงย่อยลงไปเรื่อยๆ จนเป็นเส้นที่เล็กที่สุดเรียกว่า brochiole ซึ่งแต่ละเส้นประกอบ ด้วยถุงลมจิ๋ว (alveoli) 10-20 ถุงทำหน้าที่แลกเปลี่ยน O_{2} ที่อยู่ในอากาศ (ลมหายใจ) กับ CO_{2} ที่อยู่ในเลือด ดังนั้น ถุงลมจึงต้องบางมากโดยผนังของถุงลมเรียงด้วยเซลล์ชั้นเดี้ยวและมีความหนาประมาณ 0.1 ไมครอนจึงทำให้เกิดการ แลกเปลี่ยนก๊าซระหว่าง air-blood barrier ได้อย่างรวดเร็ว ปอดคนเราแต่ละข้างมี alveoli 300-400 ถุงและคิดเป็น พื้นที่ผิวมากกว่า 100 ตารางเมตร ระบบหรือกลไกป้องกันฝุ่นเริ่มที่จมูกซึ่งประกอบด้วยขนและน้ำมูกที่ใช้ในการดักจับฝุ่น เยื่อบุผนังตั้งแต่บริเวณหลอดลมลงมาจนถึง brochiole ประกอบด้วย mucous gland (สร้างน้ำเมือก) และ ciliary cell ที่ประกอบด้วยเส้นเล็กๆ เรียกว่า cilia โบกพัดไปมาอยู่ตลอดเวลา (1000-1500 ครั้ง/นาที) และทำให้เกิดการเคลื่อนตัว ของน้ำเมือกขึ้นสู่ส่วนบนของหลอดลม ($0.5-1$ เซนติเมตร/นาที) ฝุ่นใหญ่ (>10 ไมครอน) จะถูกจับหรือกักจนไม่ สามารถผ่านหลอดลมเข้ามาได้ ส่วนฝุ่นที่มีขนาดไม่เกิน 10 ไมครอนสามารถผ่านกลไกป้องกันที่จมูกเข้ามาพร้อมกับ ลมหายใจได้เรียกว่า inhalable $P M$ ฝุ่นละเอียด ($<2-3$ ไมครอน) สามารถล่วงลึกเข้ามาและอาจค้างอยู่ในปอดได้ ที่ หลอดลมและแขนง (bronchial tubes) ฝุ่นจะถูกจับด้วย cilia กับน้ำเมือกแล้วถูกขับออกไปโดยการไอ จาม ขาก/ถ่ม เสลดหรือกลืนลงท้อง อย่างไรก็ตามฝุ่นที่มีขนาดละเอียดมากๆ สามารถผ่านเข้าสู่ถุงลมได้ เนื่องจากผนังของถุงลมบางมาก โดยธรรมชาติเพื่อให้มีความสามารถที่ดีในการแลกเปลี่ยนก๊าซ ร่างกายจึงเปลี่ยนเครื่องมือในการป้องกันที่เหมาะสม จาก cilia และน้ำเมือกเป็น cell ที่เรียกว่า macrophage ซึ่งจะทำหน้าที่กลืนกิน (ห่อหุ้ม) ฝุ่นและขับออกไปผ่านทาง เดินอากาศผ่านกลไก ดังกล่าวข้างต้น นอกจากนี้ร่างกายยังใช้เม็ดเลือดขาวที่เรียกว่า neutrophils ในกำจัดฝุ่นที่มีเชื้อโรค ปะปนมา (รวมทั้งเชื้อโรคเอง) ที่เข้ามาถึงถุงลม ดังกรณีตัวอย่างในการศึกษาปริมาณฝุ่นในปอดของศพคนงานเหมืองถ่าน หินที่คาดว่าตลอดช่วงชีวิตหายใจเอาฝุ่นเข้าไปในปอด 1000 กรัม แต่กลับพบฝุ่นในปอด 40 กรัม ซึ่งแสดงให้เห็นถึง ประสิทธิภาพของกลไกการป้องกันฝุ่นโดยธรรมชาติ

แม้ว่าระบบหายใจจะมีกลไกป้องกันฝู่นก็ตามแต่ถ้าเราได้รับฝุ่นจากการที่อยู่ในบรรยากาศที่มีปริมาณฝุ่นสูงและ หรือยาวนานก็สามารถทำให้เราเจ็บป่วยและถึงขั้นเสียชีวิตได้ จากกรณีข้างต้นแสดงให้เห็นว่ากลไกป้องกันไม่สามารถกำจัด ฝุนที่เข้าสู่ร่างกายได้สมบูรณ์ 100 เปอร์เซ็นต์ถ้าเราต้องรับฝุ่นอย่างต่อเนื่องและยาวนาน นอกนี้ในการทำงานของระบบป้องกัน ฝุ่นของร่างกายในหลายกรณีก่อให้เกิดแผลเป็นขึ้นและมีผลต่อประสิทธิภาพการทำงานของปอด ดังนั้นการได้รับฝุ่นอย่าง ต่อเนื่องและยาวนานจึงเป็นสิ่งที่ควรหลีกเลี่ยงโดยเฉพาะฝุ่นหยาบ (PM 10) และฝุ่นละเอียด (PM 2.5) ที่สามารถหายใจ เข้าไปได้ เมื่อปอดเกิดความเสียหายแล้วก็จะส่งผลต่อการทำงานของหัวใจต่อไปได้ โดยสรุปฝุ่นไม่ได้เพียงแต่สร้างปัญหา สุขภาพให้กับปอดเท่านั้นแต่ยังสร้างความเสียหายให้กับหัวใจหรือเรียกรวมว่า cardiorespiratory system

PM กับมาตรฐานคุณภาพอากาศ

ปัญหามลพิษทางอากาศเป็นปัญหาที่เกิดขึ้นอย่างต่อเนื่องยาวนานนับร้อยปีหลังยุคปฏิวัตอุตสาหกรรมและ หลังจากที่มนุษย์เรารู้กักนำถ่านหินมาเป็นเชื้อเพลิงอย่างกว้างขวางและมากขึ้นอย่างรวดเร็ว สมัยเมื่อมีโรงงานอุตสาหกรรม เกิดขึ้นในช่วงแรกๆ นั้นการได้เห็นปล่องโรงงานพ่นควันดำออกมากลับถูกมองว่านั่นเป็นเครื่องหมายของความเจริญ การมีงานทำ ความอยู่ดีกินดีแและสภาพเศรษฐกิจที่ดีหรือ "healthy economy" โดยหารู้ไม่เลยว่าควันดำดังกล่าวแฝงไว้ ด้วยพิษภัยหลายประการ ต่อเมื่อได้ตระหนักถึงผลเสียของปัญหามลพิษทางอากาศดังตัวอย่างที่เห็นได้ชัดของกรุงลอนดอน ที่มีปัญหาอากาศเสียพร้อมหมอกควันกระจายไปทั่วเมืองจึงได้เกิดศัพท์ใหม่ว่า "smog" ที่มาจากการรวมคำของ "smoke" และ "fog" จึงได้มีความพยายามในการแก้ปัญหาที่เกิดขึ้นและหนึ่งในทางแก้ก์คือ การกำหนดมาตรฐานคุณภาพอากาศ ขึ้นมาเพื่อปกป้องประชาชนทั่วไป SO_{2} และ PM เป็นสารมลพิษสองชนิดที่เป็นเป้าหมายของการจัดการป้องกันแก้ไข และต่อมาในช่วงเริ่มแรกของการออกมาตรฐานจึงได้กำหนด PM ไว้ในรูปของ black smoke และต่อมาจึงกำหนดเป็น ค่า TSP จนถึง PM 2.5 ในที่สุด การทบทวนปรับเปลี่ยนมาตรฐาน PM เป็นผลมาจากหลักฐานทางวิทยาศาสตร์และ งานวิจัยจำนวนมากทำให้ได้ข้อสรุปว่ามีความเชื่อมโยงระหว่าง PM กับอัตราการเจ็บป่วยและการตายของประชาชน ดังกรณีการปรับทบทวนมาตรฐานคุณภาพอากาศของสหรัฐอเมริกาและ WHO ที่พอสรุปได้ดังนี้

NAAQS หรือ National Ambient Air Quality Standard เป็นมาตรฐานคุณภาพอากาศที่บัญญัติขึ้นเป็น ครั้งแรกของสหรัฐอเมริกาโดย USEPA ในปี พ.ศ. 2514 มาตรฐานดังกล่าวได้กำหนดค่าความเข้มข้นหรือปริมาณของ สารมลพิษออกเป็นสองระดับคือ มาตรฐานปฐูภูมิ (primary standard) และมาตรฐานทุติยภูมิ (secondary standard) โดยมาตรฐานปฐมภูิิเป็นค่ากำหนดของสารมลพิษทางอากาศในระดับที่ปกป้องสุขภาพของสาธารณชนโดยไม่คำนึงถึง ต้นทุน ในขณะที่ มาตรฐานทุติยภูมิเป็นการกำหนดเพื่อปกป้องสวัสดิภาพ เช่น ทัศนียภาพ การเพาะปลูก เป็นต้น แต่ทั้งนี้ ต้องคำนึงถึงต้นทุนและความคุ้มค่า (ผลประโยชน์) หนี่งในสารมลพิษที่มาตรฐานกำหนดไว้คือ PM ซึ่งกำหนดเป็น ค่า TSP หรือ Total Suspended Particulate ซึ่งเป็นการวัดฝุ่นที่มีขนาดไม่เกิน 50 ไมครอน ที่ 75 และ 260 มคก./ ลบ.ม. (ไมโครกรัมต่อลูกบาศก์เมตร) สำหรับหนึ่งปีและ 24 ชั่วโมง ตามลำดับ ต่อมาในปี พ.ศ. 2530 ได้มีการปรับปรุง ค่ามาตรฐานคุณภาพอากาศขึ้นใหม่ ในครั้งนี้ค่า TSP ได้ถูกตัดออกไปและแทนที่ด้วยค่า PM10 (ฝุ่นหยาบที่มีขนาด ไม่เกิน 10 ไมครอนและสามารถเข้าสู่ปอดพร้อมลมหายใจได้) โดยค่ามาตรฐานหนึ่งปีและ 24 ชั่วโมงที่ 50 และ 150 มคก./ลบ.ม.ตามลำดับ อีกสิบปีต่อมา (ปี พ.ศ. 2540) USEPA ได้ตัดสินใจเพิ่ม PM2.5 (ฝุ่นละเอียดที่มีขนาดไม่เกิน 2.5 ไมครอนที่สามารถเข้าสู่ปอดพร้อมลมหายใจได้) เข้ามาไว้ใน NAAQS โดยกำหนดค่ามาตรฐาน 15.0 และ 65 มคก./ลบ.ม. สำหรับหนึ่งปีแลละ 24 ชั่วโมงตามลำดับ ในปี พ.ศ. 2545 ได้ปรับค่ามาตรฐาน 24 ชั่วโมงของ PM 2.5 ลงเหลือ 35 มคก./ลบ.ม. และตัดค่ามาตรฐานหนึ่งปี PM 10 ออก ล่าสุดในปี พ.ศ. 2555 มีการปรับมาตรฐาน PM 2.5 เล็กน้อยจากเดิมที่ค่าหนึ่งปี (15.0 มคก./ลบ.ม.) เป็นทั้งมาตรฐานปฐูมูิมิและทุติยภูมิได้ปรับมาตรฐานปฐมภูมิใหม่เป็น 12.0 มคก./ลบ.ม. สำหรับมาตรฐานทุติยภูมิยังคงค่าเดิมไว้ อย่างไรก็ตามการปรับค่ามาตรฐาน PM 2.5 ยังคงไม่เป็นที่ พอใจสำหรับนักวิทยาศาสตร์ด้านสิ่งแวดล้อมและด้านสุขภาพ ด้วยเห็นถึงความร้ายแรงของฝุ่นละเอียดที่มีต่อสุขภาพ ของสาธารณชน ความขัดแย้งดังกล่าวได้ไปไกลถึงการฟ้องร้องต่อศาลสูงของสหรัฐอเมริกา อย่างไรก็ตามในเรื่องนี้มีประเด็น ที่น่าสนใจคือ EPA ได้ตัดสินใจที่จะกลับไปทบทวนมาตรฐาน PM ให้ละเอียดรอบคอบมากขึ้นกว่าเดิมและคาดว่าจะประกาศ ใช้มาตรฐานใหม่ได้ภายในปี พ.ศ. 2560

World Health Organization Air Quality Standard องค์การอนามัยโลกหรือ WHO ได้จัดทำมาตรฐาน คุณภาพอากาศในบรรยากาศขึ้นเป็นครั้งแรกในปี พ.ศ. 2520 และได้กำหนดPMเป็นค่า TSP ดังเช่น NAAQS ของสหรัฐ อเมริกา ต่อมาหลังจากที่ปรากฏผลการวิจัยที่ชัดเจนและน่าเชื่อถือถึงความสัมพันธ์ระหว่างปริมาณฝุ่นที่หายใจเข้าไปได้ หรือinhalable $P M$ (ขนาด ≤ 10 ไมครอน) กับการเพิ่มขึ้นของอัตราการเจ็บป่วยและการตาย ในเวลาต่อมา WHO จึง ได้ปรับปรุงแก้ไขมาตรฐานคุณภาพอากาศเปลี่ยนเป็นใช้ PM 10 แทน TSP ล่าสุดในปี พ.ศ. 2548 WHO ได้ปรับแก้

มาตรฐานอีกครั้งเพื่อให้สอดคล้องกับความก้าวหน้าของงานวิจัยที่มีหลักฐานมากขึ้นถีงอันตรายของฝุ่นที่เข้าสู่ร่างกาย พร้อมลมหายใจโดยเฉพาะฝุ่นละเอียดที่มีขนาดไม่เกิน 2.5 ไมครอน $(\mathrm{PM} 2.5)$ ในครั้งนี้นอกจากจะเพิ่มมาตรฐาน PM 2.5 แล้วยังปรับลดค่ามาตรฐาน PM 10 ลงอีกด้วย ดังแสดงในตารงงด้านล่างต่อไปนี้

Particulate Matter, $\mu \mathrm{g} / \mathrm{m}^{3}$		USEPA (2555)	WHO (2548)	ประเทศไทย (2553)
TSP	1ปี	----	----	100
	24 ชั่วโมง	----	----	330
PM10	1ปี	----	20	50
	24 ชั่วโมง	$150^{\text {n }}$	50	120
PM2.5	1ปี	$12.0^{\text {ข }}$	10	25
	24 ชั่วโมง	$35^{\text {n }}$	25	50

หมายเหตุ ก $=$ มาตรฐานปฐูมภูมิและทุติยภูมิ $ข=$ มาตรฐานปฐมภูมิ

ความสำคัญของ PM2.5 และ PM10 ในทัศนะ WHO

WHO ให้ความความสำคัญหรือน้ำหนักของ PM ค่อนข้างมากเนื่องจากเห็นว่ามีผลต่อประชาชนอย่างกว้างขวาง WHO ได้ประมาณการว่าการปรับลดค่ามาตรฐาน PM 10 (จาก 70 มคก./ลบ.ม. ลงมาเป็น 50 มคก./ลบ.ม.) สามารถ ลดอัตราการตายอันเนื่องมาจากมลพิษทางอากาศลงได้ร้อยละ 15 ฝุ่นละเอียด (≤ 2.5 ไมครอน) มีผลต่อ สุขภาพแม้ในระดับต่ำ การตรวจวัด PM2.5 จึงถูกพิจารณาว่าเป็น "ตัวชี้วัดหรือบ่งชี้ที่ดีที่สุด" สำหรับการวัดระดับความ เสี่ยงด้านสุขภาพจากมลพิษทางอากาศ สังเกตได้ว่าในการจัดลำดับเมืองที่มีปัญหามลพิษทางอากาศ WHO ได้เลือกใช้ PM 10 และโดยเฉพาะ PM 2.5 เป็นเครื่องมือในการชี้วัดระดับความรุนแรงของปัญหามลพิษทางอากาศของเมืองต่างๆ เมือง 10 ลำดับแรกที่มีคุณภาพอากาศเลวร้ายที่สุดตามเกณฑ์ดังกล่าวส่วนใหญ่อยู่ในประเทศอินเดียและปากีสถาน โดยมี สาเหตุหลักคล้ายคลึงกันคือเป็นผลพวงที่เกิดจากการใช้ถ่านหินเป็นเชื้อเพลิงในภาคอุตสาหกรรมและควันเสียจากการ จราจรที่หนาแน่น โดยสรุปคือการใช้เชื้อเพลิงฟอสซิลเป็นต้นเหตุของการเพิ่มขึ้นของ PM2.5 ในบรรยากาศดังที่ได้เคย กล่าวถึงข้างต้นมาแล้ว

PM2.5 มลพิษส่งออก :จากจีนสู่อเมริกา

12-14 มกราคม 2556 เป็นช่วงเวลาที่เลวร้ายสำหรับผู้ที่อาศัยอยู่ในกรุงปักกิ่งจากสภาพมลพิษทางอากาศที่รุนแรง จนเห็นและรับรู้ได้อย่างชัดเจนในหมู่ประชาชน หมอกควันที่ปกคลุมทั่วเมืองไม่เพียงแต่าำให้เสื่อมเสียต่อทัศนวิสัยแล้ว ยังมีอันตรายต่อสุขภาพเป็นอย่างมากด้วย ในวันที่ 12 และ 14 มกราคม สถานทูตสหรัฐอเมริกาตรวจวัด PM 2.5 พบว่า สูงถึง 886 และ291มคก./ลบ.ม.ตามลำดับ (มาตรฐาน WHO 25มคก./ลบ.ม.) และค่า AQI (Air Quality Imdex) 775 และ 341 ตามลำดับ

AQI	คุณภาพอากาศ
$0-50$	Good
$50-100$	Moderate
$101-150$	Lightly polluted
$151-200$	Medially polluted
$201-300$	Heavily polluted
$301-500$	Severely polluted

จากเหตุการณ์ดังกล่าวกรุงปักกิ่งจึงถูกขนานนามว่า "airpocalypse" ต่อมาเมื่อพูดถึงคำนี้ความหมายได้กว้างออก ไปเป็นหมายถึงการเกิดสภาพอากาศที่เลวร้ายจากการเกิด smog ของเมืองใหญ่อื่นๆ ของจีนด้วย

ถ้าย้อนเวลากลับไปในอดีต $30-40$ ปีก่อนในราวปลายทศวรรษ 1970 S ที่เติ้งเสี่ยวผิงได้เริ่มทำการปฏิรูประบบ เศษฐิกิจจีนโดยมีวลีเปรียบเปรยว่า "แมวสีไหนก็จับหนูไไ้" หลังจากนั้นราว 30 ปีผลิตภัณฑ์มวลรวมหรือ GDP ของจีน อยู่ในระดับ 10% ต่อเนื่องนับสิบปีและะเป็นผลให้ปัจจุบันจีนเป็นประเทศที่มีขนาดเศรษฐูกิจใหญ่เป็นอันดับสองของโลก รองจากสหรัฐอเมริกา สามสิบกว่าปีก่อนไม่มีใครนึกว่าภาพของรถจักรยานที่ครองพื้นถนนของเมืองใหญ่ดังเช่นปักกิ่งจะ หายไปและจีนได้กลายเป็นประเทศที่เป็นตลาดรถยนต์ที่ใหญ่ที่สุดในโลก ความเจริญทางเศรษฐิกิจของจีนมาจากอุตสาหกรรม ความเจริญเติบโตทางเศรษฐฐิจอย่างไม่ควบคุมส่งผลให้มีการใช้พลังงานมากขึ้นในทุกภาคส่วนตั้งแต่อุตสาหกรรม การขนส่ง/ คมนาคม การเกษตรไปจนถึงครัวเรือน ถ่านหินเป็นพลังงานที่มีราคาถูกดังนั้นในสถานการณ์ที่เร่งความความเจริญเติบโต ทางเศรษฐิกิจจีนย่อมมีทางเลือกไม่มากนักนอกจากต้องพึ่งพาถ่านหินเป็นพลังงานหลัก

มีสถิติเกี่ยวกับการใช้ถ่านหินที่น่าสนใจดังนี้ ในปี พ.ศ. 2516 การใช้ถ่านหินของโลกมีปริมาณ 3074 ล้านตัน หรือคิดเป็นสัดส่วน 24.5 เปอร์เซ็นต์ของพลังงาน/เชื้อเพลิงอื่นๆ มาถึงปี พ.ศ. 2556 โลกมีการใช้ถ่านหิน เพิ่มขึ้นเป็น 7823 ล้านตันหรือ 28.9 เปอร์เซ็นต์ เมื่อมาดูถึงชนิดของพลังงาน/เชื้อเพลิงที่ใช้ผลิตไฟฟ้าก็พบว่าถ่านหินถูกใช้ในสัดส่วน 38.3 และ 41.3 เปอร์เซนต์ของพลังงาน/เชื้อเพลิงอื่นๆ ทั้งหมดในปี พ.ศ. 2516 และ 2556 ตามลำดับ สถิติเมื่อปี พ.ศ. 2557 พบว่าจีนเป็นประเทศที่ผลิตถ่านหินมากที่สุดคือ 3650 ล้านตันรองลงมาคือสหรัฐอเมริกา (716 ล้านตัน) และ อินเดีย (618 ล้านตัน) ประเทศที่นำเข้าถ่านหินมากที่สุดในโลกก็ยังคงเป็นจีน (286 ล้านตัน) ถัดมาคืออินเดีย (238 ล้านตัน) และญี่ปุ่น (188 ล้านตัน) แต่มีสถิติที่น่าสนใจคือสหรัฐอเมริกากลับเป็นประเทศที่มีการส่งออกถ่านหินลำดับ ห้าของโลก (78 ล้านตัน)

ถ่านหินเป็นพลังงานที่มีราคาถูกที่สุดก็จริงแต่ก็มาพร้อมกับต้นทุนที่แฝงมาในรูปมลพิษ อาจกล่าวได้ว่าการใช้ ถ่านหินนอกจากปัญหาก๊าซเรือนกระจกแล้วยังมาพร้อมกับความสกปรกและความมีพิษ/อันตราย รวมทั้งเป็นสาเหตุสำคัญ ของการเพิ่มขึ้นของ PM 2.5 จากสถิต้ข้างต้นสรุปได้ว่าจีนเป็นประเทศที่ใช้ถ่านหินมากที่สุดในโลกและนี่น่าจะเป็นเหตุผล ส่วนหนี่งที่ทำให้เมื่อพูดถึงคำว่า "airpocalypse" ทำให้นึกถีงจีนและหรือกรุงปักกิ่งแม้ว่า WHO ได้จัดลำดับเมืองที่มี คุณภาพอากาศเลวร้ายที่สุดในโลกในช่วงปี $2556-2557$ (โดยใช้ความเข้มข้นของ PM2.5 เป็นเกณฑ์) และพบว่า 10 ลำดับแรกส่วนใหญ่อยู่ในประเทศอินเดีย ปากีสถานและบังคลาเทศก็ตาม นอกจากใช้ถ่านหินมากที่สุดในโลกและทำให้ เกิดปัญหาอากาศเป็นพิษในเมืองใหญ่ของตนแล้ว จีนยังส่งออก PM 2.5 ให้กับประเทศเพื่อนบ้านอย่างญี่ปุ่นและเกาหลี อีกด้วย ที่น่าจับตามองกว่านี้คือมีข้อสรุปจากการศึกษาวิจัยที่บ่งชี้ไปถึงว่าจีนได้ส่งออก PM 2.5 ข้ามมหาสมุทธไปจนถึง ฝั่งตะวันตกของสหรัฐออเมริกาอีกด้วย

ในช่างหลังนั้รั้รูบาลจีนกีได้ยอมรับถึงสิ่งที่เกิดขึ้นและได้หาหนทาง/วิธีการต่างๆสำหรับบรรเทาและแก้ไขปัญหา ที่เกิดขึ้นโดยการตั้งหน่วยงานขึ้นมาดูแลปัญหหสิ่งแวดล้อมในภาพรวมในระดับกระทรวง ดังเช่นที่สหรัฐูอเมริกทำใน คราที่ประเทศมีปีญูหามลพิษทางอากาศในช่วงทศวรรษ 1950 ถึง 1960 จนเป็นผลให้มีการจัตตั้ง USEPA ขึ้นในปี 2514 ซึ่งทำให้การป้องกันแก้ไขปัญหาสิ่งแวดล้อมของสหรัฐอเมริกาประสบความสำเร็จในระดับที่น่าพอใจ แต่สำหรับจีนก็กังคง ต้องจับตามองต่อไปเพราะอ่างไรเสียจีนก็น่าจะัังคงให้น้ำหนักหรือความสำคัญของ GDP มากกว่สิ่งแวดล้อม

บทเรียนสำหรับประเทคไทย

Particle Pollution เป็นปัญหหามลพิษทางอากาศที่ควรได้ร้บการใส่ใจเพราะมีผลต่อการเพิ่มขึ้นของอัตราการ เจ็บป่วยและการตายของประชาชน โดยเฉพาะในกลุ่มเสี่ยง เช่น เด็กและทารก ผู้สูอายุ้ ผู้มีโรคประจำตัวบางโรค เป็นต้น ฝุ่นขนาดไม่เกิน 10 ไมครอนเป็นฝุ้นที่เราสมมารถหายใจเข้าไปได้ ยิ่งกว่านั้นคือยิ่งเล็กก็กิ่งเป็นอันตรายต่อร่งกกายมากขึ้นน เนื่องจากิิ่งเข้าไปไนระบบหายใจได้ลึกมากขึ้น การเผาใหมเเชื้อเพลิงฟอสซิลเป็นผลทำให้เกิดฝุ่นละเดียด (PM2.5) ทั้งที่เกิคขึ้นโดยตรง (primary PM) และที่เกิคขึ้นมาภายหลังจากปฏิกิริยาในอากาศ (secondary PM) จากบทเรียนใน ต่างประเทศตั้งแต่อดีตจนถึงปจจุบันเป็นสิ่งที่ประเทศไไทยไไม่ควรมองข้าม เพราะประเทศเราเงกก็พบกับ Particle Pollution ทั้งจกกประเทศเพื่อนบ้าน (กรณีภาคใต้จกกไฟใหม้ในอินโดนีเซีย) ทั้งกรณีเผาป่าและเผาเพื่อเตรียมการเพาะปลูก (กรณี ภาคเหนือ) การใช้ถ่านหินในการผลิติไฟ้้และอุตสหกรรมที่ก่อให้ไัญหนและคาามขัดแย้ง อย่างไรก็์ตมก็ะังมี่าวดีสำหรับ ประเทศไทยที่นายกรัฐูนนตรี พลเอก ประยุทธ์ จันทร์โอชา ได้เอาจิิงเอาจังกับกรรผลักคันให้มีการใช้รถยนต์พลังไฟฟ้า อย่างจริจจัง เรื่งงดังกล่วไมมได้มีนียยะด้านสิ่งแวดล้อมเท่านั้น แต่มีนัยยะในเรื่องพลังงานสะอาด ในเรื่องการพัฒนาขีด ความสามารถของประเทศทางด้านวิทยาศาสตร์ วิศวกรรมและเทคโนโลยีซึ่งนับวันก็จะยิ่งมีความสำคัญมากขึ้นต่อการพัฒนา ประเทค่ไปสู่ความเจริญอย่างยั่ยืนอย่างสมดุลระหว่างความเริญทางเศรษฐูกิงและคุณภาพสิ่งแวคล้อม

บรรณานุกรม

Canadian Centre for Occupational Health and Safety, What are the Effects of Dust on the Lungs? http://www.ccohs.ca/oshanswers/chemicals/lungs_dust.html

Frederick K.Lipfert, Air Pollution and Community Health, VNR, 1994
NBR, China's Off-the-Chart Air Pollution: Why It Matters (and Not Only to the Chinese), http:// www.nbr.org/research/activity.aspx?id=394

Noah Lechtzin, Defense Mechanisms of the Respiratory System, https://www.merckmanuals.com/ home/lung-and-airway-disorders/biology-of-the-lungs-and-airways/defense-mechanisms-of-the-respiratory-system

USEPA, Particulate Matter (PM), https://www3.epa.gov/pm/
USEPA, History of the National Ambient Air Quality Standards for Particulate Matter
During the Period 1971-2012, https://www3.epa.gov/ttn/naaqs/standards/pm/s_pm_history.html
WHO, Ambient (outdoor) air quality and health, Fact sheet Nฐ313, updated March 2014http://www.who.int/ mediacentre/factsheets/fs313/en/

WHO, Air quality deteriorating in many of the world's cities, 7 May 2014 http://www.who.int/ mediacentre/news/releases/2014/air-quality/en/

WHO, Air Quality Guidelines Global Update 2005, World Health OrganiZation, 2006

